Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(x^2-2x+2+4y^2+4y\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
2. \(4x^2-4x+y^2+2y+2\)
\(=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2\)
3. \(4x^2+4x+4y^2+4y+2\)
\(=\left(4x^2+4x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(2x+1\right)^2+\left(2y+1\right)^2\)
4. \(4x^2+y^2+12x+4y+13\)
\(=\left(4x^2+12x+9\right)+\left(y^2+4y+4\right)\)
\(=\left(2x+3\right)^2+\left(y+2\right)^2\)
\(x^2-2x+2+4y^2+4y\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
\(4x^2-4x+y^2+2y+2\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2\)
a) ( 2x + 1 )2 + 10( 2x + 1 ) + 25
= ( 2x + 1 )2 + 2.( 2x + 1 ).5 + 52
= [ ( 2x + 1 ) + 5 ]2
= ( 2x + 1 + 5 )2
= ( 2x + 6 )2
b) x2 + 2x( y - 2 ) + y2 - 4y + 4
= x2 + 2x( y - 2 ) + ( y2 - 4y + 4 )
= x2 + 2x( y - 2 ) + ( y - 2 )2
= [ x + ( y - 2 ) ]2
= ( x + y - 2 )2
c) x2 + 12x + 40 + y2 + 4y
= ( x2 + 12x + 36 ) + ( y2 + 4y + 4 )
= ( x + 6 )2 + ( y + 2 )2 ( cấy ni không viết được ;-; )
d) x2 - 8x - 20 - y2 - 12y
= ( x2 - 8x + 16 ) - ( y2 + 12y + 36 )
= ( x - 4 )2 - ( y + 6 )2
= [ ( x - 4 ) - ( y + 6 ) ][ ( x - 4 ) + ( y + 6 ) ]
= ( x - 4 - y - 6 )( x - 4 + y + 6 )
= ( x - y - 10 )( x + y + 2 )
e) x2 + y2 + 4x + 4y + 2( x + 2 )( y + 2 ) + 8
= ( x2 + 4x + 4 ) + 2( x + 2 )( y + 2 ) + ( y2 + 4y + 4 )
= ( x + 2 )2 + 2( x + 2 )( y + 2 ) + ( y + 2 )2
= [ ( x + 2 ) + ( y + 2 ) ]2
= ( x + 2 + y + 2 )2
= ( x + y + 4 )2
a, Đề sai bạn ơi phải là cộng 16 chứ không phải cộng 4
b,B= (x-2y+1)^2
a, \(25x^2+5xy+\frac{1}{4}y^2=\left(5x\right)^2+2.5x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\)
\(=\left(5x+\frac{1}{2}y\right)^2\)
b, \(9x^2+12x+4=\left(3x\right)^2+2.3x.2+2^2=\left(3x+2\right)^2\)
c, \(x^2-6x+5-y^2-4y=\left(x^2-6x+9\right)-\left(y^2+4y+4\right)\)
\(=\left(x-3\right)^2-\left(y+2\right)^2=\left(x-y-5\right)\left(x+y-1\right)\)
d, \(\left(2x-y\right)^2+4\left(x+y\right)^2-4\left(2x-y\right)\left(x+y\right)\)
\(=\left(2x-y\right)^2-2\left(2x-y\right)\left(2x+2y\right)+\left(2x+2y\right)^2\)
\(=\left(2x-y+2x+2y\right)^2=\left(4x+y\right)^2\)
\(a.=\left(2x\right)^2-2.2x.2y+\left(2y\right)^2=\left(2x-2y\right)^2\)
\(b.=\left(3x\right)^2-2.3x.2+2^2=\left(3x-2\right)^2\)
a. 4x2+4y2-8xy=(2x)2+(2y)2-8xy
=(2x-2y)2
b.9x2-12x+4=(3x)2-12x+22
=(3x-2)2
c.xy2+1/4x2y4+1=xy2+(1/2xy2)2+1
=(1/2xy2+2)2
a/ 9x2-12xy+4y2 = (3x - 2y)2
b/ 25x2-10x+1 = (5x - 1)2
c/ 9x2-12x+4 = (3x - 2)2
d/ 4x2+20x+25 = (2x + 5)2
e/ x4-4x2+4 = (x2 - 2)2
\(A=x^2-8x+17\)
\(=\left(x^2-8x+16\right)+1\)
\(=\left(x-4\right)^2+1\ge1\)
Dấu = xảy ra \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy \(Min_A=1\Leftrightarrow x=4\)
\(B=x^2-x+1\)
\(=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu = xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Min_B=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
\(C=4x^2-12x+13\)
\(=\left(4x^2-12x+9\right)+4\)
\(=\left(2x-3\right)^2+4\ge4\)
Dấu = xảy ra \(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(Min_C=4\Leftrightarrow x=\frac{3}{2}\)
\(D=x^2-2x+y^2+4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy \(Min_D=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(E=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1-1\)
\(=\left(x^2+5x+5\right)^2-1\ge-1\)
\(\Rightarrow E_{min}=-1\) khi \(x^2+5x+5=0\Leftrightarrow x=\frac{-5\pm\sqrt{5}}{2}\)
b) 4x^2+y^2-20x-2y+26=0;
(4x^2-20x+25)+(y^2-2y+1)=(2x-5)^2+(y-1)^2=0
<=>x=5/2; y=1
`a)x^2-2x+2+4y^2+4y`
`=x^2-2x+1+4y^2+4y+1`
`=(x-1)^2+(2y+1)^2`
`b)4x^2+y^2+12x+4y+13`
`=4x^2+12x+9+y^2+4y+4`
`=(2x+3)^2+(y+2)^2`
`c)x^2+17+4y^2+8x+4y`
`=x^2+8x+16+4y^2+4y+1`
`=(x+4)^2+(2y+1)^2`
`d)4x^2-12xy+y^2-4y+13`
`=4x^2-12x+9+y^2-4y+4`
`=(2x-3)^2+(y-2)^2`
a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)
b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)
c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)
d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)