Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(x=13-4\sqrt{10}=\frac{26-8\sqrt{10}}{2}=\frac{10-2.4.\sqrt{10}+16}{2}=\frac{\left(\sqrt{10}-4\right)^2}{2}\)
Ta có: \(Q=x+\sqrt{5x}-2\sqrt{2x}-2\sqrt{10}\)
\(=\sqrt{x}\left(\sqrt{x}+\sqrt{5}\right)-2\sqrt{2}\left(\sqrt{x}+\sqrt{5}\right)\)
\(=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-2\sqrt{2}\right)\)
\(=\left(\frac{4-\sqrt{10}}{\sqrt{2}}+\sqrt{5}\right)\left(\frac{4-\sqrt{10}}{\sqrt{2}}-2\sqrt{2}\right)\)
\(=\left(2\sqrt{2}-\sqrt{5}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}-2\sqrt{2}\right)\)
\(=2\sqrt{2}.\left(-\sqrt{5}\right)=-2\sqrt{10}\)
2, a, Để đồ thị h/s đi qua gốc tọa độ thì x=y=0
Ta có: \(-2m-1=0\Leftrightarrow m=\frac{-1}{2}\)
b, giao điểm của h/s y=x-2m-1 với trục hoành A(2m+1;0) với trục tung B(0;-2m-1)
Có: OA=2m+1; OB=|-2m-1|=2m+1
Áp dụng hệ thức lượng trong tam giác vuông coS:
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(2m+1\right)^2}+\frac{1}{\left(2m+1\right)^2}=\frac{2}{\left(2m+1\right)^2}\)
\(\Leftrightarrow\frac{\left(2m+1\right)^2}{2}=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)
\(\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2m+1=1\\2m+1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=-1\end{cases}}}\)
c, Hoành độ trung điểm I của AB là: \(x_I=\frac{x_A+x_B}{2}=\frac{2m+1}{2}\)
Tung độ trung điểm I của AB: \(y_I=\frac{y_A+y_B}{2}=\frac{-\left(2m+1\right)}{2}\)
Ta có: \(y_I=-x_I\)=> quỹ tích trung điểm I của AB là đường thẳng y=-x
b: Tọa độ M là:
x=0 và y=1-3/2*0=1
Vì (d) đi qua M(0;1) và N(2;3) nên ta có hệ:
0a+b=1 và 2a+b=3
=>b=1; a=1
Bài giải:
Vẽ đồ thị: y = x2
x |
-6 |
-3 |
0 |
3 |
6 |
y = x2 |
12 |
3 |
0 |
3 |
12 |
y = -x + 6
- Cho x = 0 => y = 6.
- Cho y = 0 => x = 6.
Vẽ đồ thị: xem hình bên dưới.
b) Giá trị gần đúng của tọa độ câc giao điểm (thực ra đây là giá trị đúng).
Hai đồ thị cắt nhau tại hai điểm A và B.
Theo đồ thị ta có A(3; 3) và B(-6; 12).
Lời giải:
a)
ĐTHS $y=2x$ màu xanh lá
ĐTHS $y=-2x+5$ màu xanh dương
ĐTHS $y=\frac{2}{3}x-4$ màu đỏ.
b) Thay $x_M,y_M$ xem thỏa mãn hàm số nào thì $M$ thuộc ĐTHS đó.
Ta thấy: \(-8=\frac{2}{3}.(-6)-4\) nên $M$ thuộc ĐTHS $y=\frac{2}{3}x-4$
c)
Gọi giao điểm của đt $y=\frac{2}{3}x-4$ với trục Ox, Oy lần lượt là $A,B$
$x_A=(y_A+4).\frac{3}{2}=4.\frac{3}{2}=6$
$y_B=\frac{2}{3}x_B-4=0-4=-4$
Áp dụng công thức hệ thức lượng trong tam giác vuông, nếu gọi $d$ là khoảng cách từ $O$ đến đt $y=\frac{2}{3}x-4$ thì:
$\frac{1}{d^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}=\frac{1}{6^2}+\frac{1}{4^2}$
$\Rightarrow d=\frac{12\sqrt{13}}{13}$ (đvđd)
d)
PT hoành độ giao điểm:
$-2x+5=\frac{2}{3}x-4$
$\Rightarrow x=\frac{27}{8}$
$y=-2x+5=-2.\frac{27}{8}+5=\frac{-7}{4}$
Vậy tọa độ giao điểm 2 ĐTHS trên là $(\frac{27}{8}, \frac{-7}{4})$