K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018

a) \(12\left(2x-5\right)^2-3\left(1+4x\right)\left(4x-1\right)\)

\(=12\left[\left(2x\right)^2-2.2x.5+5^2\right]-3\left(4x+1\right)\left(4x-1\right)\)

\(=12\left(4x^2-20x+25\right)-3\left[\left(4x\right)^2-1\right]\)

\(=48x^2-240x+300-3\left(16x^2-1\right)\)

\(=48x^2-240x+300-48x^2+3\)

\(=-240x+303\)

19 tháng 6 2018

a,\(\left(2x-1\right)\left(4x^2+2x+1\right)=\left(2x-1\right)\left[\left(2x\right)^2+2x.1+1^2\right]\)

\(=\left(2x\right)^3-1=8x^3-1\)

b,\(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2\)

\(=x^2+2.x.2y+\left(2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)

11 tháng 9 2021

`a)(2x-1)(4x^2+2x+1)`

`=(2x-1)[(2x)^2+2x.1+1^2]`

`=(2x)^3-1^3`

`=8x^3-1`

Áp dụng HĐT:`A^3-B^3=(A-B)(A^2+AB+B^2)`

`b)(x+2y+z)(x+2y-z)`

`=[(x+2y)+z][(x+2y)-z]`

`=(x+2y)^2-z^2`

`=x^2+2.x.2y+(2y)^2-z^2`

`=x^2+4xy+4y^2-z^2`

Áp dụng HĐT:`A^2-B^2=(A+B)(A-B)`

                      `(A+B)^2=A^2+2AB+B^2`

19 tháng 6 2018

a) \(\left(2x-1\right)\left(4x^2+2x+1\right)=8x^3-1\)

b) \(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2\)

20 tháng 6 2018

a) \(\left(2x-1\right)\left(4x^2+2x+1\right)=\left(2x\right)^3-1^3=8x^3-1\)

b) \(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2.\)

21 tháng 6 2017

a) = (x+1-x+1)(x2+2x+1+x2-1+x2-2x+1)- 6(x2-1)

   = 2( 3x2+1)- 6(x2-1)

   = 2( 3x2+1-3x2+3)

   =2. 4

   =8

29 tháng 6 2017

\(=3x^2\left(x^2-1\right)+\left(x^8-3x^4+3x^2-1\right)-\left(x^8-1\right)\)

\(=3x^4-3x^2+x^8-3x^4+3x^2+1-x^8+1\)

\(=2\)

=2 nha ban

(con cach lam ban nhan dang thuc len rui rut gon lai)

27 tháng 7 2020

a) \(\left(1+x\right)^2+\left(1-x\right)^2\) 

\(=1+2x+x^2+1-2x+x^2\)

\(=2x^2+2\)

b) \(\left(x+2\right)^2+\left(1+x\right)\left(1-x\right)\)

\(=x^2+4x+4+1-x^2\)

\(=4x+5\)

c) \(\left(x-3\right)^2+3\left(x+1\right)^2\)

\(=x^2-6x+9+3x^2+6x+3\)

\(=4x^2+12\)

d)\(\left(2+3x\right)\left(3x-2\right)-\left(3x+1\right)^2\)

\(=9x^2-4-9x^2-6x-1\)

\(=-6x-5\)

e) \(\left(x+5\right)\left(x-2\right)-\left(x+2\right)^2\)

\(=x^2-2x+5x-10-x^2-4x-4\)

\(=-x-14\)

f) \(\left(x+3\right)\left(2x-5\right)-2\left(1+x\right)^2\)

\(=2x^2-5x+6x-15-2-4x-2x^2\)

\(=-3x-17\)

g) \(\left(4x-1\right)\left(4x+1\right)-4\left(1-2x\right)^2\)

\(=16x^2-1-4+16x-16x^2\)

\(=16x-5\)

#Học tốt!

23 tháng 6 2017

a) \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x+1\right)\cdot\left[x\cdot\left(x-1\right)-\left(x^2-x+1\right)\right]\)

\(=\left(x+1\right)\left(x^2-x-x^2+x-1\right)\)

\(=\left(x+1\right)\cdot\left(-1\right)\)

\(=-1\left(x+1\right)\)

b) \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)

\(=x^3-3x^2+3x-1-\left(x^3+8\right)+\left(3x+12\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-\left(x^3+8\right)+3x^2-3x+12x-12\)

\(=x^3-1-x^3-8+12x-12\)

\(=-21+12x\)

c) \(3x^2\left(x+1\right)\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)\)

\(=3x^2\left(x^2-1\right)+x^6-3x^4+3x^2-1-\left(x^6-1\right)\)

\(=3x^4-3x^2+x^6-3x^4+3x^2-1-x^6+1\)

\(=0\)

24 tháng 6 2017

câu b bạn làm sai rồi í!

21 tháng 4 2017

1. \(\left|x+5\right|-\left|1-2x\right|=x\left(1\right)\)

Với phương trình kiểu này thì phải lập bảng để xét dấu của x+5 và 1-2x ta có nghiệm của hai nhị thức để chúng bằng 0 lần lượt là -5 và 0,5. Bảng xét dấu:

Bất phương trình bậc nhất một ẩn

Ứng với bảng ta có 3 khoảng giá trịn của x ứng với ba phương trình sau.

* Với \(x< -5\) (khoảng đầu)

\(\left(1\right)\Leftrightarrow-\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow-x+2x-x=5+1\\ \Leftrightarrow0x=6\)

Phương trình vô nghiệm.

* Với \(-5\le x\le0,5\) (khoảng giữa)

\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow x+2x-x=1-5\\ \Leftrightarrow x=-2\)

\(x=-2\) thỏa mãn điều kiện nên ta lấy.

* Với \(x>0,5\) (khoảng cuối)

\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(2x-1\right)=x\\ \Leftrightarrow x-2x-x=-5-1\\\Leftrightarrow x=3 \)

\(x=3\) thỏa nãm điều kiện nên ta lấy.

Kết luận tập nghiệm của phương trình (1) là: \(S=\left\{-2;3\right\}\)

21 tháng 4 2017

Chứng minh bất đẳng thức:

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\\ \Rightarrow2a^2+2b^2\ge a^2+2ab_{ }+b^2\\ \Leftrightarrow2a^2+2b^2-a^2-b^2-2ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\\Leftrightarrow\left(a-b\right)^2\ge0\left(1\right)\)

Vì BĐT (2) luôn đúng với mọi a,b do đó ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

11 tháng 6 2018

a) \(\left(2x^2-1\right)^2\)

\(=4x^4-4x^2+1\)

b)\(\left(\dfrac{1}{2}x+3y^2\right)^2\)

\(=\dfrac{1}{4}x^2+3xy^2+9y^4\)