K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2016

ko biết

31 tháng 8 2016

Bài quá dễ tự làm đi 

k mình mình giải cho

2 tháng 7 2017

B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)

\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)

\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)

\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))

2 tháng 8 2016

~~~~~1)~~~~~

Đặt * \(N=\left(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}-1}}\right)^2\left(ĐK:N>0\right)\)

\(M=\sqrt{3-2\sqrt{2}}\)

Ta có:

** \(N=\left(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}-1}}\right)^2\)

\(\Rightarrow N^2=\frac{\sqrt{5}+2+\sqrt{5}-2+2\left(5-4\right)}{\sqrt{5}+1}=\frac{2\sqrt{5}+2}{\sqrt{5}+1}=\frac{2\left(\sqrt{5}+1\right)}{\sqrt{5}+1}=2\)

\(\Rightarrow N=\sqrt{2}\left(1\right)\)

** \(M=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\left(2\right)\)

Từ (1) và (2) suy ra:

\(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}-1}}-\sqrt{3-2\sqrt{2}}=\sqrt{2}-\sqrt{2}+1=1\)

~~~~~2)~~~~~

\(\sqrt{x-1}=x+1\left(1\right)\) 

Bình phương 2 vế, ta được:

\(\left(1\right)\Leftrightarrow x-1=\left(x+1\right)^2\)

\(\Leftrightarrow x-1=x^2+2x+1\)

\(\Leftrightarrow x^2+x+2=0\)

\(\Leftrightarrow x\left(x+1\right)+2>0\Rightarrow PTVN\)

~~~~~3)~~~~~

\(\sqrt{\left(2x-1\right)^2}=x+2\)

\(\Leftrightarrow2x-1=x+2\)

\(\Leftrightarrow2x-x=2+1\)

\(\Leftrightarrow x=3\)

(Chúc bạn học tốt và nhớ tíck cho mình với nhá!)

2 tháng 8 2016

b)BÌnh 2 vế ta có:

căn (x-1)^2 = (x+1)^2

<=> x - 1 =x^2+ 2x+ 1

<=> -x^2 - x -2= 0

Denta: (-1)^2-4*(-1*(-2))=-7<0 -->vô nghiệm

c)<=>2x-1=x+2

<=>2x-x=1+2

<=>x=3 

4 tháng 4 2016

+Xét 2 riêng trường hợp x = 0 và y = 0.

+Xét x, y đều khác 0

Hệ \(\Leftrightarrow\int^{\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}}_{\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{1}{\sqrt[4]{y}}}\Leftrightarrow\frac{1}{2}=\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\text{ }\&\text{ }2.\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\)

\(\Rightarrow\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\left(\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\right)\left(\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\right)=\frac{4}{\sqrt{x}}-\frac{1}{\sqrt{y}}\)

Đặt \(\sqrt{y}=t.\sqrt{x}\text{ }\left(t>0\right)\)

Suy ra: \(\frac{2+t}{1+t^2}=4-\frac{1}{t}\Leftrightarrow\left(2t-1\right)\left(2t^2+1\right)=0\Leftrightarrow t=\frac{1}{2}\)

\(\Rightarrow\sqrt{x}=2\sqrt{y}\)

Thay vào phương trình đầu của hệ ban đầu:

\(\sqrt{2\sqrt{y}}\left(\frac{1}{4}+\frac{5\sqrt{y}}{5y}\right)=2\Leftrightarrow\frac{1}{4}+\frac{1}{\sqrt{y}}=\frac{2}{\sqrt{2\sqrt{y}}}\)

\(\Leftrightarrow\frac{1}{4}+2t^2=2t\text{ với }t=\frac{1}{\sqrt{2\sqrt{y}}}\)

Tới đây dễ rồi.

bài lớp mấy đấy khó quá