Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
a) A=2+2^2+2^3+2^4+...+2^2010
=(2+2^2+2^3)+...+(2^2008+2^2009+2^2010)
=2(1+2+2^2)+...+2^2008(1+2+2^2)
=7(2+...+2^2008) chia hết cho 7
trường hợp chia hết cho 3 cách làm tương đối giống
b) D=7+7^2+7^3+7^4+...+7^2010
=(7+7^2+7^3)+...+(7^2008+7^2009+7^2010)
=7(1+7+7^2)+...+7^2008(1+7+7^2)
=57(7+...+7^2008) chia hết cho 57
trường hợp cho hết cho 8 cách làm tương tự
a) Vì 7^n có tận cùng là lẻ, mà A= 7+7^2+.....+7^8 là tổng của 7 số lẻ nên a có tận cùng là số lẻ.
b) Có A= 7+7^2+7^3+7^4+7^5+7^6+7^7+7^8
A= (7+7^3) + (7^2+7^4) + (7^5+7^7) + (7^6+7^8)
A= 7.(1+7^2) + 7^2 .(1+7^2) + 7^5.(1+7^2) + 7^6.(1+7^2)
A= 7.50 + 7^2.50 + 7^5.50 + 7^6.50 = (7+7^2+7^5+7^6) .50
Do đó A chia hết cho 50 => A chia hết cho 5.
c) Vì A lẻ và A chia hết cho 5 => A có tận cùng là số 5.
Giúp mình với mình k 3 k cho người nào trả lời đúng và nhanh nhất ( cách giải nữa nha ! ) Thank you~