Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số dữ và có cái vô nghiệm ... câu này nhìn qua con làm thôi.
a, \(5x^2-x+4=0\)
Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)
Nên phương trình vô nghiệm
b, \(x^2+3x-2=0\)
Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)
Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)
a, \(5x^2-x+4=0\)
Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)
Nên phương trình vô nghiệm
b, \(x^2+3x-2=0\)
Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)
Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)
a) \(2x^2-7x-9=0\)
\(\Leftrightarrow2x^2+2x-9x-9=0\)
\(\Leftrightarrow2x\left(x+1\right)-9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{9}{2}\end{cases}}\)
b) \(4x^2-17x-15=0\)
\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{17}{4}+\frac{289}{16}-\frac{529}{16}=0\)
\(\Leftrightarrow\left(2x-\frac{17}{4}\right)^2=\frac{529}{16}=\left(\pm\frac{23}{4}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{17}{4}=\frac{23}{4}\\2x-\frac{17}{4}=\frac{-23}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=10\\2x=-\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-\frac{3}{4}\end{cases}}\)
xét f(x) = 2x - 4 = 0
=> 2x = 4
=> x = 2
xét g(x) = x^2 - ax + 2 = 0
=> g(2) = 2^2 - 2a + 2 = 0
=>6 - 2a = 0
=> 2a = 6
=> a = 3
vậy a = 3 để nghiệm của f(x) đồng thời là nghiệm của g(x)
Ta có f(x)=0
<=> 2x-4=0
<=> 2x=4
<=> x=2
Vậy x=2 là nghiệm của f(x)
Mà nghiệm của f(x) cũng là nghiệm của g(x)
=> g(2)=0
<=> 2^2-2a+2=0
<=>2a=6
<=>a=3
\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)
\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)
\(4x-3-2\left(5-3x\right)+2=0\)
\(4x-1-2\left(5-3x\right)=0\)
\(4x-1-10+6x=0\)
\(10x-11=0\)
\(10x=0+11\)
\(10x=11\)
\(x=\frac{11}{10}\)
Bài 1 :
\(M+N\)
\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)
\(=2xy^2-3x+12-xy^2-3\)
\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)
\(=xy^2-3x+9\)