K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

 \(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

=> x = 75.4 : 15 = 20 ;

     y = 60.4 : 15 = 16 ;

     z = 45.4 : 15 = 12

Vậy x = 20 ; y = 16 ; z = 12 

27 tháng 10 2019

2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)

Nếu x + y + z + t = 0

=> x + y = - (z + t)

=> y + z = - (t + x)

=> z + t = - (x + y)

=> t + x = - (z + y)

Khi đó : 

P =  \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

=> P = 4 

Nếu x + y + z + t khác 0 

=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)

=> y + z + t = z + t + x = t + x + y = x + y + z

=> x =y = z = t

Khi đó : P = 1 + 1 + 1 + 1 = 4

Vậy nếu x + y + z + t = 0 thì P = - 4

       nếu x + y + z + t khác 0 thì P = 4

31 tháng 3 2020

Ta  có:\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t};\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t};\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t};\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

Khi đó:\(M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)

\(=\frac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(=2\)

\(\Rightarrow M^{10}< 2^{10}=1024< 2020\)

Vậy ta có điều fải chứng minh :D

14 tháng 1 2016

nếu x+y+z+t khác 0 thi A=4 còn nếu bằng 0 thì bằng-4 tick nha

21 tháng 3 2019

ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t};\frac{y}{x+y+t}>\frac{y}{x+y+z+t};\frac{z}{y+z+t}>\frac{z}{x+y+z+t}.\)

\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

\(\Rightarrow M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)(1)

Lại có: \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t};\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t};\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)

\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

\(\Rightarrow M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=2\)(2)

Từ (1);(2) \(\Rightarrow1< M< 2\Rightarrow M\notinℕ\)

29 tháng 10 2019

Ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)

\(\Rightarrow\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}=\frac{x^2+3y^2-z^2}{4+27-25}=\frac{30}{6}=5\)

\(\Rightarrow\)x2=20

         y2=45

         z2=125

29 tháng 10 2019

Áp dụng .......................................

ta được: x/2=y/3=z/5=(x2+3y2-z2)/(22+3*32-52)=30/6=5

Vậy: x=10 

    y=15

    z=25

4 tháng 7 2019

Lời giải :

Theo đề bài ta có \(\frac{x}{\frac{5}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\Leftrightarrow\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}\)

Đặt \(\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5k}{2}\\z=\frac{6k}{5}\end{cases}}\)

Mặt khác : \(\frac{x}{2}=\frac{z-28}{3}\)

\(\Leftrightarrow3x-2z=-56\)

\(\Leftrightarrow3\cdot\frac{5k}{2}-2\cdot\frac{6k}{5}=-56\)

\(\Leftrightarrow k=\frac{-560}{51}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1400}{51}\\y=\frac{-2240}{153}\\z=\frac{-224}{17}\end{cases}}\)

\(B=x+y-z=\frac{-1400}{51}+\frac{-2240}{153}-\frac{-224}{17}=\frac{-4424}{153}\)