Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1.4/2.3=(2-1)(3+1)/2.3=1-1/2+1/3-1/2.3
2.5/3.4=(3-1)(4+1)/3.4=1-1/3+1/4-1/3.4
...
Suy ra N=(1-1/2+1/3-1/2.3)+(1-1/3+1/4-1/3.4)+....+(1-1/99+1/100-1/99.100)
N=98+1/100−1/2−1/2.3−1/3.4−....−1/99.100
Xét P=1/2.3+1/3.4+....+1/99.100
P= 1/2−1/3+1/3−1/4+.....+1/99−1100
P=1/2−1/100
Vậy N=98-1+1/50
N=97+1/50
Vậy 97<N<98(ĐPCM)
3 . 6 = 3 . 4 + 2 . 3 rùi đấy bạn, bn xét từng tích rùi sẽ thấy thôi.
3F= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>F
H=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
=> 4H=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)((n+3)-(n-1))
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)
=n(n+1)(n+2)(n+3)
Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
dựa vào nhé
A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
=>3A=1.2.3+2.3.3+3.4.3+n.(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+....+n.(n+1)(n+2)-(n-1).n.(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1).(n+2)
=>A=n.(n+1)(n+2)/3
B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
=>4B=1.2.3.4+2.3.4.4+....+(n-1)n(n+1).4
=1.2.3.(4-0)+2.3.4.(5-1)+...+(n-1)n(n+1)[(n+2)-(n-2)]
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
=(n-1)n(n+1)(n+2)-0.1.2.3
=(n-1)n(n+1)(n+2)
=>B=(n-1)n(n+1)(n+2)/4
Bài 1:
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
Bài 2:
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)
#Châu's ngốc
lm lại bài 2:
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
=>A=\(\frac{n\times\left(n+1\right)\left(n+2\right)}{3}\)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)