Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khỏi ghi lại đề nha
A=1-1/2+1/2-1/3+1/3-1/4+......+1/49-1/50
A=1-1/50
A=49/50
=1/1-1/2+1/2-1/3+1/3-1/4+.........+1/1999-1/2000
=1/1-1/2000
=1999/2000<3/4
A=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
A=\(\frac{1.2.3.4...2015}{2.3.4...2016}=\frac{1}{2016}\)
Hok tốt
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2015}\right).\left(1-\frac{1}{2016}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
= \(\frac{1}{2016}\)
Vậy ...
a, \(\frac{2}{5}.\frac{1}{3}-\frac{2}{15}:\frac{1}{5}+\frac{3}{5}.\frac{1}{3}\)
\(=\frac{1}{3}.\left(\frac{2}{5}+\frac{3}{5}\right)-\frac{2}{15}.5\)
\(=\frac{1}{3}.1-\frac{2}{3}\)
\(=\frac{1}{3}-\frac{2}{3}\)
\(=\frac{-1}{3}\)
b, \(\left(6-2\frac{4}{5}\right).3\frac{1}{8}+1\frac{3}{8}:\frac{1}{4}\)
\(=\left(6-\frac{14}{5}\right).\frac{25}{8}+\frac{11}{8}.4\)
\(=\frac{16}{5}.\frac{25}{8}+\frac{11}{2}\)
\(=10+\frac{11}{2}\)
\(=\frac{31}{2}\)
1/3×(3/5+2/5)-2/15×1/5
1/3×1-2/15×1/5
1/3-2/15×1/5
1/3-2/75
25/75-2/75
23/75
(6-14/5)×25/8-11/8:4/1
16/5×25/8-11/8:4/1
10/1-11/8:4/1
10/1-11/8×1/4
10/1-11/32
320/32-11/32
309/32
\(a,A=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+...+\frac{1}{73\cdot75}\)
\(A=\frac{1}{2}\left[\frac{2}{25\cdot27}+\frac{2}{27\cdot29}+...+\frac{2}{73\cdot75}\right]\)
\(A=\frac{1}{2}\left[\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right]\)
\(A=\frac{1}{2}\left[\frac{1}{25}-\frac{1}{75}\right]=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)
\(b,B=\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+\frac{1}{14\cdot17}+...+\frac{1}{197\cdot200}\)
\(3B=\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}+...+\frac{3}{197\cdot200}\)
\(3B=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\)
\(3B=\frac{1}{8}-\frac{1}{200}\)
\(3B=\frac{3}{25}\)
\(B=\frac{3}{25}:3=\frac{1}{25}\)
#)Giải :
a, \(A=\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
\(A=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\)
\(A=\frac{1}{25}-\frac{1}{75}\)
\(A=\frac{2}{75}\)
b, \(B=\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+...+\frac{1}{197.200}\)
\(B=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\)
\(B=\frac{1}{8}-\frac{1}{200}\)
\(B=\frac{3}{25}\)
#~Will~be~Pens~#
Bài 1: Rút gọn các phân số sau đến tối giản:
a) \(\frac{49+7.49}{49}=\frac{49\left(1+7\right)}{49}=8\)
b) \(\frac{9.6-9.3}{18}=\frac{9\left(6-3\right)}{18}=\frac{27}{18}=\frac{3}{2}\)
c) \(\frac{17.5-17}{3-20}=\frac{17\left(5-1\right)}{-17}=\frac{68}{-17}=-4\)
Bài 2: Tính giá trị của biểu thức:
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{7}{60}\)
Bài 3: Một số chia cho 7 dư 3, chia cho 17 dư 12, chia cho 23 dư 7. Hỏi số đó chia cho 2737 dư bao nhiêu?
Gọi số đã cho là A, theo đề bài ta có :
A = 7.a + 3 = 17.b + 12 = 23.c + 7
Mặt khác :
A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39
= 7(a + 6) = 17(b + 3) = 23(c + 2)
Như vậy A + 39 đồng thời chia hết cho 7, 17 và 23
Nhưng 7, 17 và 23 đồng thời là 3 số nguyên tố cùng nhau nên :
(A + 39) 7.17.23 hay (A + 39) 2737
Suy ra A + 39 = 2737.k suy ra A = 2737.k 39 = 2737(k - 1) + 2698
Do 2698 < 2737 nên 2698 là số dư của phép chia A cho 2737
\(A=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+...+\frac{1}{95.100}\)
\(\Rightarrow\)\(5A=1+\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{95.100}\)
\(=1+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)
\(=1+\frac{1}{5}-\frac{1}{100}=\frac{119}{100}\)
\(\Rightarrow\)\(A=\frac{119}{500}\)
A=1/1.5+1/5.10+....+1/95.100
=(5/1.5+5/5.10+...+5/95.100):5
=(1-1/5+1/5-1/10+...+1/95-1/100):5
=(1-1/100):5
=99/100:5
=99/500