Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\Delta\)=(m+1)2 -4.1(2m-3) = m2 +2m +1 - 8m +12 =(m2 -6m+9) +4 =(m-3)2 +4 >0 với mọi m
pt luôn có 2 nghiệm pb với mọi m
b) x =3 là nghiệm
32 -(m+1).3 +2m -3 =0
=>-m +3 =0 => m =3
Góp ý của anh là câu hình em chọn những câu mà có các ý nhỏ hơn để gợi ý cho các ý khác em nha =))
sol nhẹ vài bài
\(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)
\(\Leftrightarrow x\left(x+3\right)=\left(z-y\right)\left(z+y+3\right)\)
Khi đó \(z-y⋮x;z+y+3⋮x\)
Nếu \(z-y⋮x\Rightarrow z-y\ge x\Rightarrow z+y+3\ge x+2y+3>x+3\)
Trường hợp này loại
Khi đó \(z+y+3⋮x\) Đặt \(z+y+3=kx\Rightarrow x\left(x+3\right)=\left(z-y\right)kx\Rightarrow x+3=k\left(z-y\right)\)
Mặt khác \(\left(x+y\right)\left(x+y+3\right)=x\left(x+3\right)+y\left(y+3\right)+2xy>z\left(z+3\right)\)
\(\Rightarrow z< x+y\)
Giả sử rằng \(x\ge y\) Mà \(z\left(z+3\right)>x\left(x+3\right)\Rightarrow z>x>y\) mặt khác \(kx>z>x\Rightarrow k>1\)
Ta có:\(kx< \left(x+y\right)+y+3=x+2y+3\le3x+3< 4x\Rightarrow k< 4\Rightarrow k\in\left\{2;3\right\}\)
Xét \(k=2\Rightarrow z+y+3=2x\Rightarrow z=2x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)2x\Leftrightarrow x+3=2z-2y\)
\(\Leftrightarrow x+3=4x-2y-6-2y\Leftrightarrow4y=3x-3\Rightarrow y⋮3\Rightarrow y=3\) tự tìm x;z
\(k=3\Rightarrow z+y+3=3x\Rightarrow z=3x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)3x\Leftrightarrow x+3=3z-3y\Leftrightarrow x+3=3\left(3x-y-3\right)-3y\)
\(\Leftrightarrow x+3=9x-3y-9-3y\Leftrightarrow8x-12=6y\Leftrightarrow4x-4=3y\Rightarrow y=2\Rightarrow x=\frac{5}{2}\left(loai\right)\)
Vậy.............
Bài 1 : Giải :
a) Ta có : \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)
\(\Rightarrow x.\left(1-\sqrt[3]{2}\right)=\left(1-\sqrt[3]{2}\right)\left(1+\sqrt[3]{2}.1+\sqrt[3]{2^2}\right)\)
\(\Rightarrow x-x\sqrt[3]{2}=1^3-\left(\sqrt[3]{2}\right)^3=-1\)
\(\Rightarrow x+1=x\sqrt[3]{2}\)
\(\Rightarrow\left(x+1\right)^3=2x^3\)
\(\Rightarrow x^3-3x^2-3x-1=0\)
Khi đó ta có : \(A=x^5-4x^4+x^3-x^2-2x+2019\)
\(=x^5-3x^4-3x^3-x^2-x^4+3x^3+3x^2+x+x^3-3x^2-3x-1+2020\)
\(=x^2.\left(x^3-3x^2-3x-1\right)-x.\left(x^3-3x^2-3x-1\right)+\left(x^3-3x^2-3x-1\right)+2020\)
\(=2020\)
P/s : Tạm thời xí câu này đã tối về xí tiếp nha :))
\(\Leftrightarrow\hept{\begin{cases}\left(a+1\right)x-y=3\\y=a-ax\end{cases}}\)
Thay y=a-ax vào pt đầu,ta có
\(\left(a+1\right)x-a+ax=3\)
\(\Leftrightarrow ax+x-a+ax=3\)
\(\Leftrightarrow\)2ax+x=a+3
\(\Leftrightarrow\)x(2a+1)=a+3
Dể hpt có nghiệm duy nhất thì 2a+1\(\ne\)0
\(\Leftrightarrow\)a\(\ne\)\(\frac{-1}{2}\)
\(\Rightarrow\)\(x=\frac{a+3}{2a+1}\)
Mà y=a-ax
\(\Rightarrow y=\frac{a^2-2a}{2a+1}\)
Để x+y>0 thì\(\frac{a+3}{2a+1}+\frac{a^2-2a}{2a+1}=\frac{a^2-a+3}{2a+1}=\frac{\left(a-\frac{1}{2}\right)^2+\frac{11}{4}}{2a+1}\)
Vì tử số >0 nên để x+y>0 thì 2a+1>0
\(\Rightarrow a>-\frac{1}{2}\left(tm\right)\)
Vậy để hpt có nghiệm duy nhất tm x+y>0 thì a>\(-\frac{1}{2}\)
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu
\(A=\frac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4}{x-1}\)
b) \(\frac{4}{x-1}=7\)
\(\Leftrightarrow4=7.\left(x-1\right)\)
\(\Leftrightarrow\frac{4}{7}=x-1\)
\(\Leftrightarrow\frac{4}{7}+1=x\)
\(\Leftrightarrow\frac{11}{7}=x\)
\(\Rightarrow x=\frac{11}{7}\)
*Đã hơn 3 ngày mà vẫn chưa có lời giải :(
\(ĐK:x\ne0;y\ne0\)
Với pt(1) : Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow t^2=\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\)
Mặt khác : \(\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)^2=\left(t^2-2\right)^2\Rightarrow\frac{x^4}{y^4}+\frac{y^4}{x^4}+2=t^4-4t^2+4\)
Từ đó \(\frac{x^4}{y^4}+\frac{y^4}{x^4}=t^4-4t^2+2\)
Theo AM_GM có \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\Leftrightarrow t^2\ge4\Leftrightarrow|t|\ge2\)
Ta có VT của pt (1) : \(g\left(t\right)=t^4-5t^2+t+4,|t|\ge2\)
Có \(g'\left(t\right)=2t\left(2t^2-5\right)+1\)
Nhận xét :
+ \(t\ge2\Rightarrow2t\left(2t^2-5\right)\ge4\left(8-5\right)>0\Rightarrow g'\left(t\right)>0\)
+ \(t\le-2\Rightarrow2t\le-4;2t^2-5\ge3\Rightarrow-2t\left(2t^2-5\right)\ge12\Rightarrow2t\left(2t^2-5\right)\le-12\Rightarrow g'\left(t\right)< 0\)
Lập BBT có giá trị nhỏ nhất của g(t)= -2 đạt được tại t= -2
Vậy từ pt(1) có \(\frac{x}{y}+\frac{y}{x}=-2\left(.\right)\)
Đặt \(a=\frac{x}{y}\Rightarrow\frac{y}{x}=\frac{1}{a},a\ne0\)
Lúc đó pt (.) \(\Leftrightarrow a+\frac{1}{a}=-2\Leftrightarrow\left(a+1\right)^2=0\Leftrightarrow a=-1\Leftrightarrow x=-y\)
Thay \(x=-y\)vào pt(2) có :
\(x^6+x^2-8x+6=0\Leftrightarrow\left(x-1\right)^2\left(x^4+2x^3+3x^2+4x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[x^2\left(x+1\right)^2+2\left(x+1\right)^2+4\right]=0\)
\(\Leftrightarrow x-1=0\Rightarrow\orbr{\begin{cases}x=1\\y=-1\end{cases}}\)
Vậy HPT có duy nhất 1 nghiệm \(\left(x;y\right)=\left(1;-1\right)\)