Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo bài này nha!
Cho Tam giác cân ABC AB=AC=10 cm,BC=16 cm.Trên đường cao AH lấy điểm I sao cho AI=1/3 AH.Kẻ tia Cx song song?
với AH, cắt tia BI tại D
a/ Tính các góc của tam giác ABC ( câu này em tìm ra được rùi làm dùm em câu b thui )
b/Tính diện tích của tứ giác ABCD
Diện tích tứ giác ABCD = diện tích tam giác ABH + diện tích tứ giác AHCD
diện tích tam giác ABH = 1/2 AH x BH
trong đó: H là trung điểm của BC (tam giác ABC cân tại A, AH là đường cao)
nên BH = 8 cm
tam giác ABH vuông tại H nên AH = căn bậc hai của ( AB x AB - BH x BH)
AH = 6cm
=> S tam giác ABH = 1/2 8 x 6 = 24cm2
- ta có IH // CD mà H là trung điểm BC => HI là đường trung bình của tam giác CBD
=> HI = 1/2 CD
mà HI = 2/3 AH = 2/3 x6 = 4
=> CD = 8cm
AH // CD => AHCD là hình thang
Diện tích hình thang AHCD = 1/2 HC x ( AH + CD) = 1/2 8 x ( 6+8)= 56 cm2
Vậy diện tích tứ giác ABCD = 24 + 56 = 80cm2
M P N I H K
Câu a, b em tự làm nhé nó khá đơn giản
câu c)
Áp dụng định lí pitago cho 2 tam giác vuông IKM và IKP ta có:
\(IK^2=MI^2-MK^2\)
\(IK^2=IP^2-KP^2\)
Cộng vế theo vế ta có;
\(2IK^2=MI^2-MK^2+IP^2-KP^2=\left(MI^2+IP^2\right)-MK^2-KP^2=MP^2-MK^2-KP^2\)( Áp dụng định lí pita go cho tam giác MIP)
Mà MP=MN
=> Điều p cm
tự kẻ hình nha
a)xét tam giác ADB và tam giác ADC có
A1=A2(gt)
AD chung
AB=AC(gt)
=> tam giác ADB= tam giác ADC(cgc)
b) vì tam giác BCE vuông tại C=> BEC+EBC=90 độ=> BEC=90 độ-EBC
ta có ACB+ACE=BCE=90 độ=> ACE=90 độ-BCE
vì tam giác ABC cân A=> ABC=ACB
=> BEC=ACE=90 độ-ABC=> tam giác ACE cân A
c) xét tam giác AME và tam giác AMC có
AE=AC( tam giác ACE cân A)
AME=AMC(=90 độ)
AM chung
=> tam giác AME=tam giác AMC(ch-cgv)
=> EM=CM( hai cạnh tương ứng)
=> M là trung điểm => BM là trung tuyến
vì AB=AC mà AC=AE=> AB=AE=> A là trung điểm BE=> CA là trung tuyến
từ tam giác ABD= tam giác ACD=> BD=CD (hai cạnh tương ứng)=> D là trung điểm BC=> ED là trung tuyến
Vì ED giao AC tại N mà ED,AC, BM là trung tuyến=> BM, AC,ED giao nhau tại N=> N thuộc BM=> B,N,M thẳng hàng
B A C D E
a) ta có EAB=\(90^0+BAC\)
DAC=\(90^0+BAC\)
=> EAB=DAC
XÉT \(\Delta EAB\)VÀ \(\Delta CAD\)
AE=AC
AD=AB
EAB=DAC
\(\Rightarrow\Delta EAB=\Delta CAD\left(c-g-c\right)\)
\(\Rightarrow BE=DC\)(CẠNH TƯƠNG ỨNG)