Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác AMON có
\(\widehat{AMO}+\widehat{ANO}=180^0\)
Do đó: AMON là tứ giác nội tiếp
hay A,M,O,N cùng thuộc một đường tròn
a: góc OMA+góc ONA=180 độ
=>OMAN nội tiếp
b: AM=căn 9a^2-4a^2=a*căn 5
S AMON=2*S AMO=AM*MO=2a^2*căn 5
a) Nối O với N. Ta có \(\widehat{OAN}\)=\(\widehat{OBN}\)=\(\widehat{ONM}\)=90° →các góc này nội tiếp chắn nửa đường tròn đường kính ON →O,A,B,N,M cùng nằm trên đường tròn đường kính ON.
b) Nối A với M. Xét tứ giác nội tiếp OANB(chứng minhnội tiếp trước)ta có \(\widehat{AMO}\)=\(\frac{1}{2}\)\(\widebat{OA}\);\(\widehat{OAB}\)=\(\frac{1}{2}\)\(\widebat{OB}\) mà
- \(\widebat{OA}\)=\(\widebat{OB}\)→\(\widehat{AMO}\)=.\(\widehat{OAB}\)=\(\widehat{OAI}\)Xét tam giác OAI và tam giác OMA: \(\widehat{O}\)chung ,\(\widehat{OAI}\)=\(\widehat{AMO}\)\(\Rightarrow\)hai tam giác đồng dạng (g.g) \(\Rightarrow\)\(\frac{OI}{OA}\)=\(\frac{OA}{OM}\)\(\Leftrightarrow\)OI.OM=\(^{OA^2}\)=Rbình.
- c)
Xét $(O)$ có: $BC$ là dây cung
$I$ là trung điểm $BC$
$⇒OI ⊥BC$ (tính chất)
Xét $(O)$ có: $AM;AN$ là các tiếp tuyến của đường tròn
$⇒AM⊥OM;AN⊥ON;AM=AN$
Xét tứ giác $AMON$ có:
$\widehat{AMO}=\widehat{ANO}=90^o$
$⇒\widehat{AMO}+\widehat{ANO}=180^o$
$⇒$ Tứ giác $AMON$ nội tiếp (tổng 2 góc đối $=180^o$)
$⇒$ 4 điểm $A;M;O;N$ thuộc 1 đường tròn(1)
Lại có: $\widehat{AIO}=\widehat{ANO}=90^o$
$⇒\widehat{AIO}+\widehat{ANO}=180^o$
$⇒$ Tứ giác $AION$ nội tiếp (Tổng 2 góc đối $=180^o$)
hay 4 điểm $A;I;O;N$ thuộc 1 đường tròn (2)
Từ $(1)(2)⇒$ 5 điểm $A;I;O;M;N$ thuộc 1 đường tròn (đpcm)
b, $K$ sẽ là giao điểm của $MN$ và $AC$
5 điểm $A;I;O;M;N$ thuộc 1 đường tròn
$⇒$ Tứ giác $AMIN$ nội tiếp
$⇒\widehat{AIM}=\widehat{ANM}$ (các góc nội tiếp cùng chắn cung $AM$)
Ta có: $AM=AN⇒\triangle AMN$ cân tại $A$
$⇒\widehat{AMN}=\widehat{ANM}$
$⇒\widehat{AIM}=\widehat{AMN}$
hay $\widehat{AIM}=\widehat{AMK}$
Xét $\triangle AIM$ và $\triangle AMK$ có:
$\widehat{AIM}=\widehat{AMK}$
$\widehat{A}$ chung
$⇒\triangle AIM \backsim \triangle AMK(c.g.c)$
$⇒\dfrac{AI}{AM}=\widehat{AM}{AK}$
$ ⇒AK.AI=AM^2(3)$
Xét $(O)$ có: $\widehat{AMB}=\widehat{ACM}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $MB$)
Xét $\triangle AMB$ và $\triangle ACM$ có:
$\widehat{AMB}=\widehat{ACM}$
$\widehat{A}$ chung
$⇒\triangle AMB \backsim \triangle ACM(g.g)$
$⇒\dfrac{AM}{AC}=\dfrac{AB}{AM}$
Hay $AB.AC=AM^2(4)$
Từ $(3)(4)⇒AK.AI=AB.AC(đpcm)$
chép trên mạng là xong
xác định tâm rùi c/m tâm đó cách đều 4 điểm đó là đc
tâm là trung điểm của cạnh OA á