K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔOMN cân tại O

mà OA là đường cao

nên OA là phân giác củagóc MON

Xét ΔOMA và ΔONA có

OM=ON

góc MOA=góc NOA

OA chung

Do đó: ΔOMA=ΔONA

=>góc ONA=90 độ

=>AN là tiếp tuyến của (O)

b: Xét (O) có

KC,KB là tiếp tuyến

nên KC=KB

=>K năm trên trung trực của BC(1)

ΔOBC cân tại O

mà OI là trung tuyến

nên OI là trung trực của BC(2)

Từ (1), (2) suy ra O,I,K thẳng hàng

=>OK vuông góc với BC tại I

=>OI*OK=OB^2=ON^2

a: Xét tứ giác OBKC có \(\widehat{OBK}+\widehat{OCK}=90^0+90^0=180^0\)

nên OBKC là tứ giác nội tiếp

=>O,B,K,C cùng thuộc một đường tròn

b: Ta có: ΔOMN cân tại O

mà OA là đường cao

nên OA là phân giác của góc MON

Xét ΔMOA và ΔNOA có

OM=ON

\(\widehat{MOA}=\widehat{NOA}\)

OA chung

Do đó: ΔMOA=ΔNOA

=>\(\widehat{OMA}=\widehat{ONA}\)

=>\(\widehat{ONA}=90^0\)

=>AN là tiếp tuyến của (O)

c: Xét (O) có

KB,KC là tiếp tuyến

Do đó: KB=KC

=>K nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OK là đường trung trực của BC

=>OK\(\perp\)BC tại I và I là trung điểm của BC

Xét ΔOBK vuông tại B có BI là đường cao

nên \(OI\cdot OK=OB^2\)

=>\(OI\cdot OK=ON^2\left(3\right)\)

d: Xét ΔNOA vuông tại N có NH là đường cao

nên \(OH\cdot OA=ON^2\left(4\right)\)

Từ (3) và (4) suy ra \(OI\cdot OK=OH\cdot OA\)

=>\(\dfrac{OI}{OH}=\dfrac{OA}{OK}\)

Xét ΔOIA và ΔOHK có

\(\dfrac{OI}{OH}=\dfrac{OA}{OK}\)

\(\widehat{HOK}\) chung

Do đó: ΔOIA đồng dạng với ΔOHK

=>\(\widehat{OIA}=\widehat{OHK}\)

=>\(\widehat{OHK}=90^0\)

mà \(\widehat{OHM}=90^0\)

nên K,H,M thẳng hàng

mà M,H,N thẳng hàng

nên K,M,N thẳng hàng

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
10 tháng 5 2020

a) Nối CE, CF

Xét \(\Delta CEK\) và \(\Delta CFK\) có:

  \(\widehat{ECK}\)\(\widehat{CFK}\) (vì cùng chắn  \(\widebat{CE}\))

  \(\widehat{CKF}\) chung

\(\Rightarrow\)\(\Delta EKC~\Delta CKF\left(g.g\right)\) 

\(\Rightarrow\frac{EK}{CK}=\frac{CK}{FK}\)

\(\Rightarrow CK^2=EK.FK\)(1)

Vì \(\Delta COK\)vuông tại C, \(CM\perp OK\)

\(\Rightarrow CK^2=MK.OK\)(2)

Từ (1), (2) \(\Rightarrow EK.FK=MK.OK\)

                   \(\Rightarrow\frac{EK}{MK}=\frac{OK}{FK}\)

Xét \(\Delta MEK\)và \(\Delta KOF\)có:

        \(\widehat{MKE}\)chung 

         \(\frac{EK}{MK}=\frac{OK}{FK}\)

\(\Rightarrow\Delta MEK~\Delta FOK\left(c.g.c\right)\)

\(\Rightarrow\widehat{OFE}=\widehat{EMK}\)

\(\Rightarrow\)Tứ giác EMOF nội tiếp

5 tháng 3 2023

Câ b

1 tháng 9 2019

Tham khảo :Chứng minh AE, AF là các tiếp tuyến của (O)