Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là abcde
a có 6k/năng
b có 6 k/n
c có 5
d có 4
e có 2
=> co 6.6.5.4.2=1440 số
gọi \(\overline{a_1a_2a_3a_4a_5}\) là số tự nhiên cần tìm
Xét \(a_1=5\)
chọn \(\overline{a_2a_3a_4a_5}\) : \(A_6^4\) cách
\(\Rightarrow\) 360 số
Xét \(a_1\ne5\) \(\Rightarrow a_1\) có 5 cách
Đặt chữ số 5 có 4 cách
chọn 3 vị trí còn lại \(A_5^3\)
\(\Rightarrow\) có 5.4.\(A_5^3\)= 1200 số
vậy có 1200+360 = 1560 số
Đáp án là D.
Gọi số cần lập có dạng a b c
• a có 6 cách chọn; b có 6 cách chọn; c có 6 cách chọn.
• Vậy có 6.6.6 = 216 số.
Đáp án B
Phương pháp: Gọi số tự nhiên có ba chữ số cần tìm là a b c ( a ≠ 0 ) , tìm số cách chọn cho các chữ số a, b,c sau đó áp dụng quy tắc nhân.
Cách giải: Gọi số tự nhiên có ba chữ số cần tìm là a b c ( a ≠ 0 )
Có 4 cách chọn c.
Có 6 cách chọn a.
Có 7 cách chọn b.
Vậy có 4.6.7 = 168 số.
Chú ý và sai lầm: Các chữ số a, b, c không yêu cầu khác nhau.
Gọi số cần tìm có dạng a b c d ¯ với a , b , c , d ∈ A = 1 , 5 , 6 , 7 .
Vì số cần tìm có 4 chữ số không nhất thiết khác nhau nên:
a được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
b được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
c được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
d được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
Như vậy, ta có 4.4.4.4 = 256 số cần tìm.
Chọn đáp án B.
Gọi số cần tìm có dạng a b c d ¯ với a , b , c , d ∈ A = 1 , 5 , 6 , 7 .
Vì số cần tìm có 4 chữ số không nhất thiết khác nhau nên:
· a được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
· b được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
· c được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
· d được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
Như vậy, ta có 4.4.4.4 = 256 số cần tìm.
Chọn đáp án B.
Có \(5^5=3125\)SỐ