K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2024

tính E(300)=300/log2(300), E(90000)=90000/log2(90000)

Vì độ hiệu quả tỉ lệ thuận với thời gian thực hiện

nên ta có tỉ số 0,02/E(300)=x/E(90000) (x là giá trị cần tìm).

Từ đó tính được x=3

1. Cho số phức z thỏa mãn hệ thức | z-1+i | = | z-2-3i |. Tìm giá trị nhỏ nhất của biểu thức P = | z+2+i | + | z-3+2i | 2. Cho số phức z thỏa mãn hệ thức | z-i | = 2. Biết rằng | z | lớn nhất. Tìm phần ảo của z 3. Cho số phức z thỏa \(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)\). Tìm phần ảo của số phức z 4. Cho 2 số phức z = m + 3i, z' = 2 - (m + 1)i. Tìm giá trị thực của m để z.z' là...
Đọc tiếp

1. Cho số phức z thỏa mãn hệ thức | z-1+i | = | z-2-3i |. Tìm giá trị nhỏ nhất của biểu thức P = | z+2+i | + | z-3+2i |

2. Cho số phức z thỏa mãn hệ thức | z-i | = 2. Biết rằng | z | lớn nhất. Tìm phần ảo của z

3. Cho số phức z thỏa \(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)\). Tìm phần ảo của số phức z

4. Cho 2 số phức z = m + 3i, z' = 2 - (m + 1)i. Tìm giá trị thực của m để z.z' là số thực

5. Cho 3 điểm A, B, M lần lượt biểu diễn các số phức -4, 4i, x + 3i. Với giá trị thực nào của x thì A, B, M thẳng hàng?

6. Cho 2 số phức \(z_1=1+2i\), \(z_2=2-3i\). Xác định phần ảo của số phức \(3z_1-2z_2\)

7. Nếu mô đun số phức z bằng m thì mô đun của số phức \(\left(1-i\right)^2z\) bằng?

8. Trong tất cả các số phức z thỏa mãn hệ thức | z-1+3i | = 3. Tìm min | z-1-i |

9. Trong mặt phẳng phức tìm điểm biểu diễn số phức z = \(\frac{i^{2017}}{3+4i}\)

10. Trong mặt phẳng phức với hệ trục tọa độ Oxy, điểm biểu diễn của các số phức z = 3 + bi với b \(\in\) R luôn nằm trên đường có phương trình là: A. y = x B. x = 3 C. y = x + 3 D. y = 3

11. Cho 2 số phức \(z_1=1+2i\), \(z_2=2-3i\). Tổng hai số phức là?

12. Cho số phức z = 2 + 5i. Tìm số phức \(w=iz+\overline{z}\)

13. Ký hiệu \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(z^2+z+1=0\). Tìm trên mặt phẳng tọa độ điểm nào dưới đây là điểm biểu diễn số phức \(w=\frac{i}{z_0}\): A. \(M\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) B. \(M\left(-\frac{\sqrt{3}}{2};\frac{1}{2}\right)\) C. \(M\left(\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) D. \(M\left(-\frac{1}{2};-\frac{\sqrt{3}}{2}\right)\)

14. Cho số phức z thỏa mãn hệ thức | z+7-5i | = | z-1-11i |. Biết rằng số phức z = x + yi thỏa mãn \(\left|z-2-8i\right|^2+\left|z-6-6i\right|^2\) đạt giá trị nhỏ nhất. Giá trị của biểu thức \(p=x^2-y^2\)?

15. Gọi \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(2z^2-6z+5=0\). Điểm nào sau đây biểu diễn số phức \(iz_0\): A. \(M\left(\frac{3}{2};\frac{1}{2}\right)\) B. \(M\left(\frac{3}{2};-\frac{1}{2}\right)\) C. \(M\left(-\frac{1}{2};\frac{3}{2}\right)\) D. \(M\left(\frac{1}{2};\frac{3}{2}\right)\)

16. Tính mô đun của số phức \(w=z^2+i\overline{z}\) biết z thỏa mãn \(\left(1+2i\right)z+\left(2+3i\right)\overline{z}=6+2i\)

17. Trong mặt phẳng phức, cho 3 điểm A, B, C lần lượt biểu diễn 3 số phức \(z_1=1+i\), \(z_2=\left(1+i\right)^2\), \(z_3=a-i\left(a\in R\right)\). Để tam giác ABC vuông tại B thì A bằng? A. -3 B. 3 C. -4 D. -2

18. Cho số phức z thỏa mãn (1+2i)z = 3+i. Tính giá trị biểu thức \(\left|z\right|^4-\left|z\right|^2+1\)

19. Cho số phức z = a + (a-1)i (a\(\in R\)). Giá trị thực nào của a để | z | = 1 ?

20. Cho số phức z thoả mãn hệ thức | z+5-i | = | z+1-7i |. Tìm giá trị lớn nhất của biểu thức P = | |z-4-i| - |z-2-4i| |

21. Trong các số phức z = a + bi thỏa mãn | z-1+2i | =1, biết rằng | z+3-i | đạt giá trị nhỏ nhất. Tính \(p=\frac{a}{b}\)

22. Gọi A, B, C lần lượt là các điểm biểu diễn các số phức \(z_1=-1+3i\), \(z_2=-3-2i\), \(z_3=4+i\). Chọn kết luận đúng nhất: A. Tam giác ABC cân B. Tam giác ABC đều C. Tam giác ABC vuông D. Tam giác ABC vuông cân

23. Cho số phức z = 5-3i. Tính \(1+\overline{z}+\left(\overline{z}\right)^2\)

24. Cho \(f\left(z\right)=z^3-3z^2+z-1\) với z là số phức. Tính \(f\left(z_0\right)-f\left(\overline{z_0}\right)\) biết \(z_0=1-2i\)

25. Cho số phức z thỏa mãn iz + 2 - i = 0. Khoảng cách từ điểm biểu diễn của z trên mặt phẳng tọa độ Oxy đến điểm M (3;-4) là: A. \(\sqrt{13}\) B. \(2\sqrt{2}\) C. \(2\sqrt{5}\) D. \(2\sqrt{10}\)

6
NV
26 tháng 4 2019

Câu 1:

Gọi \(A\left(1;-1\right)\)\(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)

Gọi \(M\left(-2;-1\right)\)\(N\left(3;-2\right)\)\(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN

Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d

Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng

Phương trình đường thẳng d' qua M và vuông góc d có dạng:

\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)

Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)

\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)

Bài 2:

Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)

\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I

\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)

Câu 3:

\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)

\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)

NV
26 tháng 4 2019

Câu 4

\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)

\(=5m+3-\left(m^2+m-6\right)i\)

Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)

Câu 5:

\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)

Câu 6:

\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)

\(\Rightarrow b=12\)

Câu 7:

\(w=\left(1-i\right)^2z\)

Lấy môđun 2 vế:

\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)

Câu 8:

\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)

\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Lời giải:

Ta có công thức số phức sau:

\(|z_1+z_2|^2+|z_1-z_2|^2=2(|z_1|^2+|z_2|^2)\)

Chứng minh:

\(\left\{\begin{matrix} |z_1+z_2|^2=(z_1+z_2)(\overline{z_1}+\overline{z_2})=|z_1|^2+z_1\overline{z_2}+z_2\overline{z_1}+|z_2|^2\\ |z_1-z_2|^2=(z_1-z_2)(\overline{z_1}-\overline{z_2})=|z_1|^2-z_1\overline{z_2}-z_2\overline{z_1}+|z_2|^2\end{matrix}\right.\)

Cộng theo vế ta có đpcm.

Áp dụng công thức trên:

\(|z_1-z_2|^2+N^2=2(M^2+M^2)=4M^2\Rightarrow |z_1-z_2|=\sqrt{4M^2-N^2}\)

Đáp án C

NV
22 tháng 6 2020

\(z=x+y.i\) \(\Rightarrow\overline{z}=x-yi\)

Theo bài ra ta có:

\(\frac{1}{z}=\overline{z}\Leftrightarrow\frac{1}{x+yi}=x-yi\)

\(\Leftrightarrow\left(x+yi\right)\left(x-yi\right)=1\Leftrightarrow x^2+y^2=1\)

\(\Rightarrow\left|z\right|=1\)

6 tháng 9 2020

Câu 2. Đặt A=x2+y2+1

Nhập \(2^A=\left(A-2x+1\right)4^x\) vào máy tính Casio. Cho x=0.01, tìm A

Máy sẽ giải ra, A=1.02=1+2x

\(\Leftrightarrow x^2+y^2+1=1+2x\)

\(\Leftrightarrow x^2+y^2-2x=1\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=1\) (C)

Có (C) là đường tròn tâm (1,0) bán kính R=1

Lại có: P=\(\frac{8x+4}{2x-y+1}\)

\(\Leftrightarrow x\left(2P-8\right)-yP+P-4=0\) (Q)

Có (Q) là phương trình đường thẳng.

Để x,y có nghiệm thì đường thẳng và đường tròn giao nhau nghĩa là d(I,(Q))\(\le R\)

\(\Leftrightarrow\frac{\left|x\left(2P-8\right)-yP+P-4\right|}{\sqrt{\left(2P-8\right)^2+P^2}}\le1\)

\(\Leftrightarrow\frac{\left|2P-8+P-4\right|}{\sqrt{\left(2P-8\right)^2+1}}\le1\)

\(\Leftrightarrow\left(3P-12\right)^2\le5P^2-32P+64\)

\(\Leftrightarrow4P^2-40P+80\le0\)

\(\Leftrightarrow5-\sqrt{5}\le P\le5+\sqrt{5}\)

Vậy GTNN của P gần số 3 nhất. Chọn C

1) Gọi n là số nghiệm của phương trình sin(2x+ \(30^o\))= \(\frac{\sqrt{3}}{2}\) trên khoảng (\(-180^o\); \(180^o\)). Tìm n 2) Gọi (C) là đồ thị của hàm số y= \(\log_{2018}x\) và (C') là đồ thị của hàm số y= f(x), (C') đối xứng với (C) qua trục tung. hàm số y= \(\left|f\left(x\right)\right|\) đồng biến trên khoảng nào ? 3) Cho hàm số y= \(x^3\)+ \(3x^2\)+ 3x+5 có đồ thị (C). Tìm tất cả những giá trị nguyên của...
Đọc tiếp

1) Gọi n là số nghiệm của phương trình sin(2x+ \(30^o\))= \(\frac{\sqrt{3}}{2}\) trên khoảng (\(-180^o\); \(180^o\)). Tìm n

2) Gọi (C) là đồ thị của hàm số y= \(\log_{2018}x\) và (C') là đồ thị của hàm số y= f(x), (C') đối xứng với (C) qua trục tung. hàm số y= \(\left|f\left(x\right)\right|\) đồng biến trên khoảng nào ?

3) Cho hàm số y= \(x^3\)+ \(3x^2\)+ 3x+5 có đồ thị (C). Tìm tất cả những giá trị nguyên của k \(\in\) \(\left[-2019;2019\right]\) để trên đồ thị (C) có ít nhất một điểm mà tiếp tuyến tại đó vuông góc với đường thẳng (d): y=(k-3)x

4) Cho 2 số phức \(z_1\), \(z_2\) thỏa mãn \(\left|z_1\right|\)=4, \(\left|z_2\right|\)=6 và \(\left|z_1+z_2\right|=10\). Giá trị của \(\frac{\left|z_1-z_2\right|}{2}\)

5) Cho hàm số y= \(\frac{x^4}{4}-\frac{mx^3}{3}+\frac{x^2}{2}-mx+2019\) (m là tham số). Gọi S là tập hợp tất cả những giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (6;+∞). Tính số phần tử của S biết rằng \(\left|m\right|\le2020\)

0
1 nếu \(\int_0^2\) f(x)dx=-10 thì \(\int_0^2f\left(2x\right)dx\) bằng 2 cho số phức z thỏa z+\(\)\(z+3\overline{z}=8+14i\). Phần ảo của số phức đã cho bằng 3 diện tích hình phẳng giói hạn bỏi các đường y =lnx, y=0, x=\(\frac{1}{e}\) và x=e 4 biết \(\int_0^{\frac{\pi}{3}}f\left(x\right)=4\) , giá trị của \(\int_0^{\frac{\pi}{3}}\left[f\left(x\right)+2sinx\right]dx\) 5 cho hai số thực x và y thỏa mãn (4x+y)+(y-x)i=(x+2y-6)+(3x-1)i với...
Đọc tiếp

1 nếu \(\int_0^2\) f(x)dx=-10 thì \(\int_0^2f\left(2x\right)dx\) bằng

2 cho số phức z thỏa z+\(\)\(z+3\overline{z}=8+14i\). Phần ảo của số phức đã cho bằng

3 diện tích hình phẳng giói hạn bỏi các đường y =lnx, y=0, x=\(\frac{1}{e}\) và x=e

4 biết \(\int_0^{\frac{\pi}{3}}f\left(x\right)=4\) , giá trị của \(\int_0^{\frac{\pi}{3}}\left[f\left(x\right)+2sinx\right]dx\)

5 cho hai số thực x và y thỏa mãn (4x+y)+(y-x)i=(x+2y-6)+(3x-1)i với i là đơn vị ảo . Gía trị của 6x-y bằng

6 họ tất cả nguyên hàm của hàm số f(x)=\(\frac{x+2}{x+1}\) trên khoảng (-1,\(+\infty\)) là

7 trong ko gian Oxyz, cho hai điểm M (-3;1;2) và N (1;3;-3) , mat95 phẳng vuông góc với MN tại điểm M có pt là

8 cho hình nón có chiều cao bằng \(a\sqrt{6}\) và thiết diện đi qua trục của khối nón đó là tam giác đều, thể tích khối nón bằng

9 cho số phức z thỏa mãn 2(\(\overline{z}\) +i)+(2+i)z=6+5i. Mô đun của số phức z bằng

10 trong ko gian Oxyz, cho \(\overline{a}\left(2;3;-1\right),\overline{b}\left(-1;0;2\right)\) . Tính \(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)\)

11 họ tất cả các nguyên hàm của hàm số f(x) =x^4 -3e^x là

12 cho hình chóp tứ giác đều có tất cả các cạnh bằng 2a. Diện tích mặt cầu ngoại tiếp hình chóp đã cho bằng

13 cho hàm số f(x) liên tục trên R , biết e^X là một nguyên hàm của hàm số \(f\left(x\right)e^{-x}\) . Họ tất cả các nguyên hàm của hàm số x.\(f^,\left(x\right)là\)

14 biết\(\int\frac{dx}{e^x+e^{-x}+2}\) =\(a\left(e^x+1\right)^b+C\) với a,b,c \(\in Z\) . Tính S=2a-3b

15 họ tất cả các nguyên hàm của ham số y =6xlnx trên khoảng \(\left(0;+\infty\right)\)

16 cho hình trụ có chiều cao bằng 4a. Biết rằng khi cắt hình trụ bởi một mặt phẳng song song với trục và cách trục một khoảng 2a, thiết diện thu dc là một hình vuông. Thể tích khối trụ dc giới hạn bởi hình trụ đã cho bằng

17 trong ko gian oxyz, cho điểm M (1;-3;2) và mặt phang73 (P) :x-3y-2z+5=0 , biết mặt phẳng (Q) :ax-2y+bz-7=0 đi qua M và vuông góc (P) , giá trị của 3a+2b bằng

18 cho hình nón có bán kính bằng \(a\sqrt{3}\) và chiêu cao a. Một mp thay đổi qa đỉnh nón và cắt hình nón theo thiết diện là tam giác cân. Tính diện tích lớn nhất tam giác cân đó

11
AH
Akai Haruma
Giáo viên
20 tháng 7 2020

18.

Mặt phẳng đi qua đỉnh hình nón cắt hình nón theo thiết diện tam giác cân $ABC$ với $A$ là đỉnh hình nón.

Kẻ $OH\perp BC$ tại $H$.

Chiều cao của tam giác $ABC$ là:

$AH=\sqrt{AO^2+OH^2}=\sqrt{a^2+OH^2}$

Lại có:

$BH=\sqrt{OB^2-OH^2}=\sqrt{(a\sqrt{3})^2-OH^2}=\sqrt{3a^2-OH^2}$

$\Rightarrow BC=2BH=2\sqrt{3a^2-OH^2}$

Diện tích tam giác $ABC$:

$S=\frac{AH.BC}{2}=\sqrt{a^2+OH^2}.\sqrt{3a^2-OH^2}=\sqrt{(a^2+OH^2)(3a^2-OH^2)}$

$\leq \frac{a^2+OH^2+3a^2-OH^2}{2}=2a^2$ theo BĐT AM-GM

Vậy $S_{\max}=2a^2$

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

17.

MP $(Q)$ đi qua $M$ nên:

$ax_M-2y_M+bz_M-7=0\Leftrightarrow a+6+2b-7=0$

$\Leftrightarrow a+2b=1(1)$

Mặt khác $(P)\perp (Q)$ nên VTPT của $(P)$ vuông góc với VTPT của $(Q)$

$\Leftrightarrow (1,-3,-2)\perp (a,-2,b)$

$\Leftrightarrow a+6-2b=0$

$\Leftrightarrow a-2b=-6(2)$

Từ $(1);(2)\Rightarrow a=\frac{-5}{2}; b=\frac{7}{4}$

$\Rightarrow 3a+2b=-4$

17. Gọi \(z_1\), \(z_2\) là các nghiệm của pt \(z^2+4z+5=0\) . Đặt \(w=\left(1+z_1\right)^{100}+\left(1+z_2\right)^{100}\) . Khi đó A. \(w=2^{50}i\) B. \(w=-2^{51}\) C. \(w=2^{51}\) D. \(w=-2^{50}i\) 14. Trong mp tọa độ Oxy, gọi M là điểm biểu diễn số phức \(z=3-4i\) ; M' là điểm biểu diễn cho số phức \(z'=\frac{1+i}{2}z\) . Tính diện tích \(\Delta OMM'\) A. \(\frac{25}{4}\) B. \(\frac{25}{2}\) C. \(\frac{15}{4}\) D. \(\frac{15}{2}\) 10....
Đọc tiếp

17. Gọi \(z_1\), \(z_2\) là các nghiệm của pt \(z^2+4z+5=0\) . Đặt \(w=\left(1+z_1\right)^{100}+\left(1+z_2\right)^{100}\) . Khi đó

A. \(w=2^{50}i\)

B. \(w=-2^{51}\)

C. \(w=2^{51}\)

D. \(w=-2^{50}i\)

14. Trong mp tọa độ Oxy, gọi M là điểm biểu diễn số phức \(z=3-4i\) ; M' là điểm biểu diễn cho số phức \(z'=\frac{1+i}{2}z\) . Tính diện tích \(\Delta OMM'\)

A. \(\frac{25}{4}\)

B. \(\frac{25}{2}\)

C. \(\frac{15}{4}\)

D. \(\frac{15}{2}\)

10. TÌm 2 số thực \(x\)\(y\) thỏa mãn \(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\) với \(i\) là đơn vị ảo.

A. \(x=-1;\) \(y=-3\)

B. \(x=-1;\) \(y=-1\)

C. \(x=1;\) \(y=-1\)

D.\(x=1;\) \(y=-3\)

6. Hình tròn tâm \(I\left(-1;2\right)\) bán kính \(r=5\) là tập hợp điểm biểu diễn hình học của các số phức \(z\) thỏa mãn

A. \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\ge5\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}z=\left(x+1\right)+\left(y-2\right)i\\\left|z\right|=5\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}z=\left(x-1\right)+\left(y+2\right)i\\\left|z\right|\le\sqrt{5}\end{matrix}\right.\)

D. \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)

3. Xét số phức thỏa mãn \(\left|z-2-4i\right|=\left|z-2i\right|\) . Tìm GTNN của \(\left|z\right|\)

A. 4

B. \(2\sqrt{2}\)

C. 10

D. 8

2
NV
22 tháng 6 2020

10.

\(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\)

\(\Leftrightarrow\left(2x+1\right)+\left(-3y-3\right)i=x+6i\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=x\\-3y-3=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

6.

\(\left(x+1\right)^2+\left(y-2\right)^2\le25\)

\(\Rightarrow\left|\left(x+1\right)-\left(y-2\right)i\right|\le5\)

\(\Rightarrow z\) là số phức: \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)

Lưu ý: hình tròn khác đường tròn. Phương trình đường tròn là \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)

Pt hình tròn là: \(\left(x-a\right)^2+\left(y-b\right)^2\le R^2\)

3.

\(z=x+yi\Rightarrow\left|x-2+\left(y-4\right)i\right|=\left|x+\left(y-2\right)i\right|\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-4\right)^2=x^2+\left(y-2\right)^2\)

\(\Leftrightarrow-4x-8y+20=-4y+4\)

\(\Leftrightarrow x=-y+4\)

\(\left|z\right|=\sqrt{x^2+y^2}=\sqrt{\left(-y+4\right)^2+y^2}=\sqrt{2y^2-8y+16}\)

\(\left|z\right|=\sqrt{2\left(x-2\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\)

NV
22 tháng 6 2020

17.

\(z^2+4z+4=-1\Leftrightarrow\left(z+2\right)^2=i^2\Rightarrow\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)

\(\Rightarrow w=\left(-1+i\right)^{100}+\left(-1-i\right)^{100}=\left(1-i\right)^{100}+\left(1+i\right)^{100}\)

Ta có: \(\left(1-i\right)^2=1+i^2-2i=-2i\)

\(\Rightarrow\left(1-i\right)^{100}=\left(1-i\right)^2.\left(1-i\right)^2...\left(1-i\right)^2\) (50 nhân tử)

\(=\left(-2i\right).\left(-2i\right)...\left(-2i\right)=\left(-2\right)^{50}.i^{50}=2^{50}.\left(i^2\right)^{25}=-2^{50}\)

Tượng tự: \(\left(1+i\right)^2=1+i^2+2i=2i\)

\(\Rightarrow\left(1+i\right)^{100}=2i.2i...2i=2^{50}.i^{50}=-2^{50}\)

\(\Rightarrow w=-2^{50}-2^{50}=-2^{51}\)

18.

\(z'=\left(\frac{1+i}{2}\right)\left(3-4i\right)=\frac{7}{2}-\frac{1}{2}i\)

\(\Rightarrow M\left(3;-4\right)\) ; \(M'\left(\frac{7}{2};-\frac{1}{2}\right)\)

\(S_{OMM'}=\frac{1}{2}\left|\left(x_M-x_O\right)\left(y_{M'}-y_O\right)-\left(x_{M'}-x_O\right)\left(y_M-y_O\right)\right|\)

\(=\frac{1}{2}\left|3.\left(-\frac{1}{2}\right)-\frac{7}{2}.\left(-4\right)\right|=\frac{25}{4}\)

5 tháng 4 2016

Mặt cầu (S) có tâm I(-2;-1;1) và bán kính \(R=\sqrt{5}\)

Gọi r là bán kinh đường tròn thiết diện, theo giả thiết ta có : \(S=\pi\Leftrightarrow r^2.\pi=\pi\Rightarrow r=1\)

Gọi d là khoảng cách từ I đến mặt phẳng \(\alpha\), ta có \(d^2=R^2-r^2=5-1\Rightarrow d=2\)

Mặt phẳng  \(\alpha\), qua N (0;-1;0) có dạng \(Ax+B\left(y+1\right)+Cz=0\Leftrightarrow Ax+By+Cz+B=0\left(A^2+B^2+C^2\ne0\right)\)

Mặt khác,  \(\alpha\)  qua M(1;-1;1) nên thỏa mãn \(A+C=0\Rightarrow\text{ }\) \(\alpha:Ax+By-Az+B=0\)

Vì \(d=d\left(I,\alpha\right)=\frac{\left|-3A\right|}{\sqrt{2A^2+B^2}}=2\Leftrightarrow A^2=4B^2\Rightarrow\frac{A}{B}=\pm2\) vì \(A^2+B^2+C^2\ne0\)

Do đó có 2 mặt phẳng  \(\alpha\), cần tìm là \(2x+y-2z+1=0\) và \(2x-y-2z-1=0\)