K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A(1;2); B(2;1)

=>\(\overrightarrow{AB}=\left(1;-1\right)\)

=>VTPT là (1;1)

Phương trình đường thẳng AB là:

1(x-1)+2(y-1)=0

=>x-1+2y-2=0

=>x+2y-3=0

b:

M(1;3); Δ: 3x+4y+10=0

Khoảng cách từ M đến Δ là:

\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)

 

9 tháng 10 2019

Đáp án D

Ta gọi  M(a ; 0)

Đường thẳng AB qua B(0 ; 3) và nhận  A B   → ( - 3   ;   4 )  làm VTCP và n → ( 4   ; 3 )  làm VTPT nên có pt :

4(x-0) + 3( y-3) =0 hay 4x + 3y -9= 0 và AB= 5

18 tháng 4 2021

undefined

4 tháng 3 2023

cho em hỏi tại sao chỗ 2y+1,1 toạ độ M tìm sao v ạ

5 tháng 8 2017

Đáp án D

Đường thẳng đi qua 2 điểm A B có vectơ chỉ phương là  suy ra tọa độ vectơ pháp tuyến là ( 4;3) .

Suy ra phương trình AB:  4( x-3) + 3( y+ 1) = 0 hay 4x+ 3y -9=0

Do M nằm trên Ox nên M( x; 0)

Do d(M; AB)=1 nên

2 tháng 8 2016

Gọi M(x,y)

Theo bài ra ta có:

d(M,AB)=\(\frac{x-3y+5}{\sqrt{10}}\) =\(\frac{\sqrt{10}}{2}\)

=>x=3y                   (1)

CosAMB=\(\frac{y^2-5y+6+x^2-5x+4}{\sqrt{\left(y-2\right)^2+\left(1-x\right)^2}\cdot\sqrt{\left(y-3\right)^2+\left(4-x\right)^2}}\) =\(-\frac{\sqrt{2}}{2}\)    (2)

thay (1) vào (2) có lẽ ra pt bậc 4 đó giải tiếp nhé 

3 tháng 8 2016

thank nha

hiu

NV
29 tháng 3 2022

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Điểm M thuộc (C) thỏa mãn khoảng cách từ M tới \(\Delta\) lớn nhất khi M là giao điểm của (C) và đường thẳng d qua I và vuông góc \(\Delta\)

Phương trình d có dạng:

\(2\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-4=0\)

Hệ pt tọa độ giao điểm (C) và d:

\(\left\{{}\begin{matrix}x^2+y^2-2x+4y=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\left(2x-4\right)^2-2x+4\left(2x-4\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=0\\y=2x-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;-4\right)\\M\left(2;0\right)\end{matrix}\right.\)

Với \(M\left(0;-4\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|-2.4+7\right|}{\sqrt{1^2+2^2}}=\dfrac{1}{\sqrt{5}}\)

Với \(M\left(2;0\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|2+0+7\right|}{\sqrt{1^2+2^2}}=\dfrac{9}{\sqrt{5}}\)

Do \(\dfrac{9}{\sqrt{5}}>\dfrac{1}{\sqrt{5}}\) nên \(M\left(2;0\right)\) là điểm cần tìm