K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 11 2019

\(\overrightarrow{AB}=\left(-4;3\right)\Rightarrow AB=\sqrt{4^2+3^2}=5\)

NV
7 tháng 3 2021

\(\overrightarrow{BC}=\left(16;4\right)=4\left(4;1\right)\) ; \(\overrightarrow{AC}=\left(2;2\right)=2\left(1;1\right)\)

Phương trình đường cao xuất phát từ A và vuông góc BC:

\(4\left(x-3\right)+1\left(y-2\right)=0\Leftrightarrow4x+y-14=0\)

Pt đường cao xuất phát từ B:

\(1\left(x+11\right)+1\left(y-0\right)=0\Leftrightarrow x+y+11=0\)

Tọa độ H là nghiệm: \(\left\{{}\begin{matrix}4x+y-14=0\\x+y+11=0\end{matrix}\right.\) \(\Rightarrow H\left(\dfrac{25}{3};-\dfrac{58}{3}\right)\)

NV
6 tháng 3 2021

\(S_{ABN}=3S_{ANC}\) , mà \(S_{ABN}+S_{ANC}=S_{ABC}\)

\(\Rightarrow S_{ANC}=\dfrac{1}{4}S_{ABC}\Rightarrow\overrightarrow{NC}=\dfrac{1}{4}\overrightarrow{BC}\)

Gọi \(N\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{NC}=\left(-1-x;-2-y\right)\\\overrightarrow{BC}=\left(-3;-5\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-1-x=-\dfrac{3}{4}\\-2-y=-\dfrac{5}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\y=-\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow N\left(-\dfrac{1}{4};-\dfrac{3}{4}\right)\)

 

NV
4 tháng 3 2021

Gọi \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-m;1\right)\\\overrightarrow{MB}=\left(-2-m;4\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{MA}-2\overrightarrow{MB}=\left(m+5;-7\right)\)

\(\Rightarrow\left|\overrightarrow{MA}-2\overrightarrow{MB}\right|=\sqrt{\left(m+5\right)^2+49}\ge7\)

Dấu "=" xảy ra khi \(m+5=0\Leftrightarrow m=-5\) hay \(M\left(-5;0\right)\)

4 tháng 3 2021

Cảm ơn rất nhìu ạ

21 tháng 1 2021

a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)

\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

21 tháng 1 2021

Còn phần b,c,d,e nx bn C:

30 tháng 12 2018

Phương trình hoành độ giao điểm của ∆  và (P) là

x 2 - x + 3 = x + 2 m ⇔ x 2 - 2 x + 3 = 0                         (*)

Giả sử A ( x A ; y A )  thì B x B ; y B  là các nghiệm của phương trình (*).

Theo định lí Vi-ét ta có x A + x B = 2 .

Ta có y A = x A + 2 m ,   y B = x B + 2 m  nên y A + y B = x A + x B + 4 m = 2 + 4 m .

Tọa độ trung điểm I của đoạn thẳng AB là I x A + x B 2 ; y A + y B 2 = I 1 ; 2 m + 1 .

Chọn A.

NV
21 tháng 5 2020

Do C thuộc d nên tọa độ C có dạng \(C\left(c;2c+3\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c+1;2c+1\right)\\\overrightarrow{BC}=\left(c+3;2c+1\right)\end{matrix}\right.\)

\(AC=BC\Leftrightarrow\left(c+1\right)^2+\left(2c+1\right)^2=\left(c+3\right)^2+\left(2c+1\right)^2\)

\(\Leftrightarrow2c+1=6c+9\Rightarrow c=-2\)

\(\Rightarrow C\left(-2;-1\right)\)

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Lời giải:

Gọi tọa độ điểm \(M=(0,a)\)

Khi đó vecto biểu diễn đoạn thẳng \(MA,MB\) lần lượt là:

\(\overrightarrow{MA}=(-1,1-a)\)\(\overrightarrow {MB}=(3,2-a)\)

Ta có \(\cos \angle AMB=\cos (\overrightarrow{MA},\overrightarrow{MB})=\frac{|(-1).3+(1-a)(2-a)|}{\sqrt{1+(a-1)^2}.\sqrt{3^2+(a-2)^2}}\)

\( \Leftrightarrow \frac{|(a-1)(a-2)-3|}{\sqrt{1+(a-1)^2}\sqrt{9+(a-2)^2}}=\cos 45=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow (a+3)(a-2)(a^2-7a+4)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-3\\a=2\\a=\dfrac{7\pm\sqrt{33}}{2}\end{matrix}\right.\)