K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2015

 Gọi số dãy là x, số người ngồi trong mỗi dãy là y dk:...
Theo bài ra ra có xy =70 (1)
Nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người ngồi mới đủ chỗ
=> (x-2)(y+4) = 70 (2)
Từ (1) và (2) ta có hệ phương trình...................
Giải ra được x = 7 ; y = 10

17 tháng 5 2021

em học lớp 5 nên ko bt đâu ạ

Gọi số chỗ ngồi ban đầu ở mỗi dãy là x

Theo đề, ta có: 80/x+2=80/x-2

=>80/(x+2)-80/x=-2

=>\(\dfrac{80x-80x-160}{x\left(x+2\right)}=-2\)

=>x^2+2x-80=0

=>x=8

16 tháng 1 2019

bài mẫu nè:

gọi số dãy ghế là x, số ghê là y 
theo đb ta có hpt 
(x-2)(y+2)=288 
xy=288 
giải pt tìm đk x=18; y=16 

27 tháng 5 2021

sai r bạn ak phải ra là 2 TH là 12(tm) và -16( k tm)

 

Gọi số dãy ghế lúc ban đầu là x(dãy)

(Điều kiện: \(x\in Z^+\))

Số người ngồi trên 1 dãy ghế ban đầu là \(\dfrac{80}{x}\left(người\right)\)

Số dãy ghế khi bớt đi 2 dãy là x-2(dãy)

Số người ngồi trên 1 dãy ghế khi bớt đi 2 dãy ghế là \(\dfrac{80}{x-2}\left(người\right)\)

Theo đề, ta có phương trình:

\(\dfrac{80}{x-2}-\dfrac{80}{x}=2\)

=>\(\dfrac{80x-80\left(x-2\right)}{x\left(x-2\right)}=2\)

=>\(\dfrac{160}{x\left(x-2\right)}=2\)

=>x(x-2)=80

=>\(x^2-2x-80=0\)

=>(x-10)(x+8)=0

=>\(\left[{}\begin{matrix}x-10=0\\x+8=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=10\left(nhận\right)\\x=-8\left(loại\right)\end{matrix}\right.\)

Vậy: Số dãy ghế ban đầu là 10 dãy

Số người ngồi trên 1 dãy ban đầu là 80:10=8 người

23 tháng 5 2018

Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
                                     {y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.

2 tháng 6 2015

Gọi số dãy ghế trong phòng họp là x (dãy) (x thuộc N*, x > 3)
Vì trong phòng có 360 người nên mỗi dãy có số người là 360:x
Nếu bớt đi 3 dãy và thêm vào mooic dãy 4 người thì số người vẫn không thay đổi nên ta có phương trình :
                         (x -3)(360:x +4) = 360 
                  <=>  360 + 4x -1080:x -12 = 360
                  <=>  4x^2-12x -1080 =0
                  <=>   x^2 - 3 x -270 =0
                  <=>   x^2 - 18x +15x -270 =0
                  <=>   (x -18)(x +15) = 0
                  <=>   x= 18 (thỏa mãn) hoặc x=-15 (loại)
 Vậy số dãy trong phòng họp là 18 dãy
 ĐÚNG HỘ NHA!!!!

28 tháng 5 2015

Gọi số dãy ghế là x (cái)

số người trong 1 dãy ghế là y (cái ) 
Ban đầu thìta có  xy=100  (1) 
Về sau thì (x+2)(y+2)=144  (2) 
ta lấy  (2)-(1) thì được xy+2x+2y+4-xy=144-100 suy ra 2x+2y=40 suy ra x+y=20 
Kết hợp với (1), dùng định lý Viet về tổng và tích các nghiệm của phương trình bậc hai, suy ra x, y là nghiệm của phương trình X^2-20X+100=0, suy ra x=10, y=10 
Kết luận: lúc đàu phòng có 10 dãy ghế (và mỗi dãy ghế có 10 người)

9 tháng 5 2018

Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)

Lúc đầu mỗi dãy có \(\frac{240}{x}\)ghế

Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế

=> \(\left(\frac{240}{x}+1\right)\left(x+3\right)=315\Leftrightarrow240+\frac{720}{x}+x+3=315\)

\(\Leftrightarrow x-72+\frac{720}{x}=0\Leftrightarrow\frac{x^2-72x+720}{x}=0\Leftrightarrow x^2-72x+720=0\)

\(\Delta'=\left(-36\right)^2-720=576\)

=> x1= 60 (Loại), x2=12 (thỏa mãn)

Vậy trong phòng họp lúc đầu có 12 dãy ghế. 

10 tháng 12 2021

Gọi số dãy ghế ban đầu là x,

số ghế trong mỗi dãy ban đầu là y (x, y ∈ N*)

Ta có: x.y=320 ⇒ y=\(\dfrac{320}{x}\) 

Nhưng vì số người hôm đó tới dự là 420 người do đó phải đặt thêm 1 dãy ghế và thu xếp để mỗi dãy ghế được thêm 4 người ngồi mới đủ nên ta có:

( x+1).( y+4)=420

⇔ ( x+1).( \(\dfrac{320}{x}\)x +4)= 420

⇔ 320+4x+\(\dfrac{320}{x}\) +4=420

⇒ 320x+4x²+320+4x=420x

⇔ 4x²-96x+320=0

⇔ x=20 hoặc x=4

Nếu x=20 thì y=16

Nếu x=4 thì y=80

Vậy trong phòng lúc đầu có 20 dãy ghế, mỗi dãy có 16 ghế

hoặc 4 dãy ghế, mỗi dãy có 80 ghế.