K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

Đáp án B

Câu (1) và (5) không là mệnh đề (vì là câu cảm thán, câu hỏi)

Các câu (3), (4), (6) là những mệnh đề đúng

Câu (2), (7) và (8) là những mệnh đề sai.

Vậy có 6 mệnh đề.

30 tháng 3 2017

Giải bài 11 trang 62 sgk Hình học 10 | Để học tốt Toán 10

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

20 tháng 4 2019

Diện tích tam giác : S = 1/2.ab.sinC.

Mà ta có 0 < sin C < 1 nên 0 < S ≤ 1/2.ab

Vậy Max S = 1/2.ab

Dấu “=” xảy ra khi sin C = 1 ⇔ C = 90º.

Vậy trong các tam giác có hai cạnh a và b, tam giác vuông có diện tích lớn nhất bằng 1/2.ab

25 tháng 3 2016

S A B C D H P A' B' C' D' P' H

Giả sử các cạnh bên của hình chóp  cắt nhau tại S.

Họi H và H lần lượt là tâm đường trong ngoại tiếp các hình vuông ABCD và A'B'C'D'

Thì S, H, H' thẳng hàng và AH, SH'  lần lượt là các đường cao của các hình chóp S.ABCD và S.A'B'C'D'

Gọi P là trung điểm của BC, P' là trung điểm của B'C'

Ta có SP và SP' là các trung đoạn của các hình chóp đều S.ABCD và S.A'B'C'D'

Xét tam giác SHP vuông tại H nên \(SP=\sqrt{SH^2+HP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

Vì B'C' vuông góc với BC và B'C'=1/2B'C' là đường trung bình của tam giác SBC

Do đó : \(SH'=\frac{1}{2}SH=2cm;SP'=\frac{1}{2}SP=2,5cm\)

Thể tích hình chóp S.ABCD là 

\(V_1=\frac{1}{3}SH.BC^2=\frac{1}{3}.4.6^2=48cm^3\)

Thể tích hình chóp S.A'B'C'D' là 

\(V_2=\frac{1}{3}SH'.A'B'^2=\frac{1}{3}.2.3^2=48-6=42cm^3\)

Thể tích của hình chóp cụt là : \(V=V_1-V_2=48-6=42cm^3\)

Diện tích xung quanh của hình chóp cụt là :

\(S_{xq}=AB^2+A'B'^2+4\frac{PP'\left(AB+A'B'\right)}{2}=6^2+3^2+4\frac{2,5\left(6+3\right)}{2}=90cm^2\)

6 tháng 2 2019

Gọi O là tâm đa giác, giả sử A, B là hai đỉnh kề nhau của đa giác

Ta có A O B ^ = 360 n ° . Diện tích đa giác đều bằng.

S = n S O A B = n . 1 2 O A . O B . sin A O B ^ = 1 2 n R 2 . sin 360 n °

ĐÁP ÁN A

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có:  \(\overrightarrow {BA}  = (2 - ( - 2);1 - 5) = (4; - 4)\) và \(\overrightarrow {BC}  = ( - 5 - ( - 2);2 - 5) = ( - 3; - 3)\)

b)

Ta có: \(\overrightarrow {BA} .\overrightarrow {BC}  = 4.( - 3) + ( - 4).( - 3) = 0\)

\( \Rightarrow \overrightarrow {BA}  \bot \overrightarrow {BC} \) hay \(\widehat {ABC} = {90^o}\)

Vậy tam giác ABC vuông tại B.

Lại có: \(AB = \left| {\overrightarrow {BA} } \right| = \sqrt {{4^2} + {{( - 4)}^2}}  = 4\sqrt 2 \); \(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{3^2} + {{( - 3)}^2}}  = 3\sqrt 2 \)

Và \(AC = \sqrt {A{B^2} + B{C^2}}  = 5\sqrt 2 \) (do \(\Delta ABC\)vuông tại B).

Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}.AB.BC = \frac{1}{2}.4\sqrt 2 .3\sqrt 2  = 12\)

Chu vi tam giác ABC là: \(AB + BC + AC = 4\sqrt 2  + 3\sqrt 2  + 5\sqrt 2  = 12\sqrt 2 \)

c) Tọa độ của trọng tâm G là \(\left( {\frac{{2 + ( - 2) + ( - 5)}}{3};\frac{{1 + 5 + 2}}{3}} \right) = \left( {\frac{{ - 5}}{3};\frac{8}{3}} \right)\)

d) Giả sử điểm D thỏa mãn BCAD là một hình bình hành có tọa độ là (a; b).

Ta có: \(\overrightarrow {CB}  = ( 3; 3)\) và \(\overrightarrow {AD}  = (a - 2;b - 1)\)

Vì BCAD là một hình bình hành  nên \(\overrightarrow {AD}  = \overrightarrow {CB} \)

\(\begin{array}{l} \Leftrightarrow (a - 2;b - 1) = ( 3;3)\\ \Leftrightarrow \left\{ \begin{array}{l}a - 2 =  3\\b - 1 =  3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  5 \\b = 4\end{array} \right.\end{array}\)

Vậy D có tọa độ (5; 4)