Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do M thuộc (d) nên gọi tọa độ M có dạng: \(\left(1+2m;-3+3m\right)\)
\(\Rightarrow\overrightarrow{AM}=\left(2m+1;3m-4\right)\)
Mà AM=5
\(\Leftrightarrow\left(2m+1\right)^2+\left(3m-4\right)^2=25\)
\(\Leftrightarrow13m^2-20m-8=0\) \(\Rightarrow m=\frac{10\pm2\sqrt{51}}{13}\)
Số xấu quá
\(B\in d\)=> B ( 7-2m; -3 +m)
\(B'\in d'\)=> B' ( -5 + 4t ; -7 + 3t )
Mà A; B;B' \(\in\)\(\Delta\) và AB = AB'
=> \(\overrightarrow{AB}=\overrightarrow{B'A}\)
=> \(\hept{\begin{cases}7-2m-2=2+5-4t\\-3+m+3=-3+7-3t\end{cases}}\)<=> m = 1; t = 1
=> B(5 ; -2); C( -1; - 4)
=> Viết phương trình d :....
a. Md1= (2;1)
Md2 = (-1;3)
b. Gọi d là đường thẳng đi qua M
- Viết PTTS của d ⊥ d1:
Ta có:
M(2;1)
Do d1⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)
--> VTCP ud = (3;1)
Vậy PTTS của d:
\(\left\{{}\begin{matrix}x=2+3t\\y=1+t\end{matrix}\right.\)
- Viết PTTQ của d ⊥ d1:
Ta có:
M(2;1)
Do d1 ⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)
Vậy PTTQ của d:
-1(x - 2) + 3(y - 1) = 0
<=> -x + 2 + 3y - 3 = 0
<=> -x + 3y - 1 = 0
- Viết PTTS của d ⊥ d2:
Ta có:
M(-1;3)
Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)
--> VTCP ud = (2;1)
Vậy PTTS của d:
\(\left\{{}\begin{matrix}x=-1+2t\\y=3+t\end{matrix}\right.\)
Viết PTTQ của d ⊥ d2:
M(-1;3)
Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)
Vậy PTTQ của d:
-1(x + 1) + 2(y - 3) = 0
<=> -x - 1 + 2y - 6 = 0
<=> -x + 2y - 7 = 0
Tọa độ M thỏa mãn: \(\left\{{}\begin{matrix}x=-16+4t\\y=-6+3t=0\end{matrix}\right.\) \(\Rightarrow M\left(-8;0\right)\)
Tọa độ N thỏa mãn: \(\left\{{}\begin{matrix}x=-16+4t=0\\y=-6+3t\end{matrix}\right.\) \(\Rightarrow N\left(0;6\right)\)
Gọi I là trung điểm MN \(\Rightarrow I\left(-4;3\right)\)
\(\overrightarrow{MN}=\left(8;6\right)\Rightarrow MN=10\Rightarrow R=\frac{MN}{2}=5\)
Phương trình đường tròn:
\(\left(x+4\right)^2+\left(y-3\right)^2=25\)
\(\left\{{}\begin{matrix}x+y=2\\xy\left(x+y\right)=2m^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=m^2\end{matrix}\right.\)
Theo Viet đảo; x và y là nghiệm của: \(t^2-2t+m^2=0\) (1)
Để hệ có nghiệm \(\Leftrightarrow\) (1) có nghiệm
\(\Leftrightarrow\Delta'=1-m^2\ge0\Rightarrow-1\le m\le1\)
\(\overrightarrow{AB}=\left(4;-2\right)=2\left(2;-1\right)\Rightarrow\) đường thẳng AB nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình AB: \(1\left(x+3\right)+2\left(y-5\right)=0\Leftrightarrow x+2y-7=0\)
Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x+2y-7=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{9}{5};\frac{13}{5}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=\left(-\frac{24}{5};\frac{12}{5}\right)=6\left(-\frac{4}{5};\frac{2}{5}\right)\\\overrightarrow{IB}=\left(-\frac{4}{5};\frac{2}{5}\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{IA}=6\overrightarrow{IB}\Rightarrow\frac{IA}{IB}=6\)
\(d_1\) nhận \(\left(2;-m\right)\) là 1 vtpt
\(d_2\) nhận \(\left(-1;3\right)\) là 1 vtcp nên nhận \(\left(3;1\right)\) là 1 vtpt
Để 2 đường thẳng vuông góc
\(\Leftrightarrow2.\left(-1\right)+\left(-m\right).3=0\Rightarrow m=-\frac{2}{3}\)