\(\begin{cases}x=2+t\\y=-3t\end{cases}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 4 2020

Do M thuộc (d) nên gọi tọa độ M có dạng: \(\left(1+2m;-3+3m\right)\)

\(\Rightarrow\overrightarrow{AM}=\left(2m+1;3m-4\right)\)

Mà AM=5

\(\Leftrightarrow\left(2m+1\right)^2+\left(3m-4\right)^2=25\)

\(\Leftrightarrow13m^2-20m-8=0\) \(\Rightarrow m=\frac{10\pm2\sqrt{51}}{13}\)

Số xấu quá

20 tháng 6 2020

\(B\in d\)=> B ( 7-2m; -3 +m) 

\(B'\in d'\)=> B' ( -5 + 4t ; -7 + 3t ) 

Mà A; B;B' \(\in\)\(\Delta\) và AB = AB' 

=> \(\overrightarrow{AB}=\overrightarrow{B'A}\)

=> \(\hept{\begin{cases}7-2m-2=2+5-4t\\-3+m+3=-3+7-3t\end{cases}}\)<=>  m = 1; t = 1 

=> B(5 ; -2); C( -1; - 4) 

=> Viết phương trình d :....

13 tháng 3 2019

a. Md1= (2;1)

Md2 = (-1;3)

b. Gọi d là đường thẳng đi qua M

- Viết PTTS của d ⊥ d1:

Ta có:

M(2;1)

Do d1⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)

--> VTCP ud = (3;1)

Vậy PTTS của d:

\(\left\{{}\begin{matrix}x=2+3t\\y=1+t\end{matrix}\right.\)

- Viết PTTQ của d ⊥ d1:

Ta có:

M(2;1)

Do d1 ⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)

Vậy PTTQ của d:

-1(x - 2) + 3(y - 1) = 0

<=> -x + 2 + 3y - 3 = 0

<=> -x + 3y - 1 = 0

- Viết PTTS của d ⊥ d2:

Ta có:

M(-1;3)

Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)

--> VTCP ud = (2;1)

Vậy PTTS của d:

\(\left\{{}\begin{matrix}x=-1+2t\\y=3+t\end{matrix}\right.\)

Viết PTTQ của d ⊥ d2:

M(-1;3)

Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)

Vậy PTTQ của d:

-1(x + 1) + 2(y - 3) = 0

<=> -x - 1 + 2y - 6 = 0

<=> -x + 2y - 7 = 0

NV
23 tháng 6 2020

Tọa độ M thỏa mãn: \(\left\{{}\begin{matrix}x=-16+4t\\y=-6+3t=0\end{matrix}\right.\) \(\Rightarrow M\left(-8;0\right)\)

Tọa độ N thỏa mãn: \(\left\{{}\begin{matrix}x=-16+4t=0\\y=-6+3t\end{matrix}\right.\) \(\Rightarrow N\left(0;6\right)\)

Gọi I là trung điểm MN \(\Rightarrow I\left(-4;3\right)\)

\(\overrightarrow{MN}=\left(8;6\right)\Rightarrow MN=10\Rightarrow R=\frac{MN}{2}=5\)

Phương trình đường tròn:

\(\left(x+4\right)^2+\left(y-3\right)^2=25\)

NV
23 tháng 6 2020

\(\left\{{}\begin{matrix}x+y=2\\xy\left(x+y\right)=2m^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=m^2\end{matrix}\right.\)

Theo Viet đảo; x và y là nghiệm của: \(t^2-2t+m^2=0\) (1)

Để hệ có nghiệm \(\Leftrightarrow\) (1) có nghiệm

\(\Leftrightarrow\Delta'=1-m^2\ge0\Rightarrow-1\le m\le1\)

\(\overrightarrow{AB}=\left(4;-2\right)=2\left(2;-1\right)\Rightarrow\) đường thẳng AB nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình AB: \(1\left(x+3\right)+2\left(y-5\right)=0\Leftrightarrow x+2y-7=0\)

Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x+2y-7=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{9}{5};\frac{13}{5}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=\left(-\frac{24}{5};\frac{12}{5}\right)=6\left(-\frac{4}{5};\frac{2}{5}\right)\\\overrightarrow{IB}=\left(-\frac{4}{5};\frac{2}{5}\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{IA}=6\overrightarrow{IB}\Rightarrow\frac{IA}{IB}=6\)

NV
21 tháng 5 2020

\(d_1\) nhận \(\left(2;-m\right)\) là 1 vtpt

\(d_2\) nhận \(\left(-1;3\right)\) là 1 vtcp nên nhận \(\left(3;1\right)\) là 1 vtpt

Để 2 đường thẳng vuông góc

\(\Leftrightarrow2.\left(-1\right)+\left(-m\right).3=0\Rightarrow m=-\frac{2}{3}\)