K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔMAB vuông tại M và ΔABE vuông tại A có 

\(\widehat{MAB}=\widehat{ABE}\)

Do đó: ΔMAB\(\sim\)ΔABE

b: Xét ΔMAB vuông tại M và ΔABE vuông tại A có 

\(\widehat{MAB}=\widehat{ABE}\)

Do đó: ΔMAB∼ΔABE

9 tháng 11 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hãy chứng minh rằng MNPQ là hình chữ nhật.

17 tháng 11 2022

Xét ΔCDB có CN/CD=CP/CB

nên NP//BD và NP=DB/2

Xét ΔEDB có EM/ED=EQ/EB

nên MQ//BD và MQ=BD/2

=>NP//MQ và NP=MQ

Xét ΔDEC có DN/DC=DM/DE

nên MN//EC

=>MN vuông góc với AB

=>MN vuông góc với NP

Xét tứ giác MNPQ có

NP//MQ

NP=MQ

MN vuông góc với NP

Do đó: MNPQ là hình chữ nhật

=>M,N,P,Q cùng thuộc 1 đường tròn

17 tháng 11 2022

Xét ΔCDB có CN/CD=CP/CB

nên NP//BD và NP=DB/2

Xét ΔEDB có EM/ED=EQ/EB

nên MQ//BD và MQ=BD/2

=>NP//MQ và NP=MQ

Xét ΔDEC có DN/DC=DM/DE

nên MN//EC

=>MN vuông góc với AB

=>MN vuông góc với NP

Xét tứ giác MNPQ có

NP//MQ

NP=MQ

MN vuông góc với NP

Do đó: MNPQ là hình chữ nhật

=>M,N,P,Q cùng thuộc 1 đường tròn

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)a) Chứng minh AD là trung trực của đoạn EF.[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG...
Đọc tiếp

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Tham khảo:

Xét tam giác DEC có  

M là trung điểm DE

N là trung điểm DC

MN là đường trung bình của tam giác DEC, hay MN//EC (*) và MN=1/2 EC (1)

* Xét tam giác BEC có 

Q là trung điểm BE

P là trung điểm BC

PQ là đường trung bình của tam giác BEC, hay PQ//EC và PQ=1/2 EC (2).

Từ (1) và (2) suy ra tứ giác MNPQ là hình bình hành.

* Xét tam giác DEB có 

Q là trung điểm BE

M là trung điểm DE

 QM là đường trung bình của tam giác BED, hay MQ//DB  (3).

Mà AB⊥AC (4)

Từ (1), (3) và (4) suy ra MN⊥MQ (5)

Tứ giác MNPQ là hình bình hành mà có một góc vuông  MNPQ là hình chữ nhật.

Gọi I là giao điểm của hai đường chéo MP và QN

Suy ra IM=IN=IP=IQ (tính chất hình chữ nhật)

Nên các điểm M, N, P, Q đều cách đều I một khoảng cố định

M, N, P, Q cùng thuộc một đường tròn.