K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

\(\Leftrightarrow\left(x_M-x_C;y_M-y_C\right)=\left(x_B-x_A;y_B-y_A\right)\)

\(\Leftrightarrow\left(x_M+1;y_M\right)=\left(3-2;-1-3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_M+1=1\\y_M=-4\end{matrix}\right.\Rightarrow M\left(0;-4\right)\)

1, Trong mặt phẳng tọa độ Oxy , cho B(2;3) , C (-1 ; 2) . Điểm M thỏa mãn \(2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\) . Tọa độ điểm M là ? 2. Cho \(\overrightarrow{a}=\left(1;2\right)\) và \(\overrightarrow{b}=\left(3;4\right)\) Vecto \(\overrightarrow{m}=2\overrightarrow{a}+3\overrightarrow{b}\) có tọa độ là ? 3. Cho A(3;-2) , B (-5;4 ) và C \(\left(\frac{1}{3};0\right)\). Ta có \(\overrightarrow{AB}=x\overrightarrow{AC}\) tìm giá trị...
Đọc tiếp

1, Trong mặt phẳng tọa độ Oxy , cho B(2;3) , C (-1 ; 2) . Điểm M thỏa mãn \(2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\) . Tọa độ điểm M là ?
2. Cho \(\overrightarrow{a}=\left(1;2\right)\)\(\overrightarrow{b}=\left(3;4\right)\) Vecto \(\overrightarrow{m}=2\overrightarrow{a}+3\overrightarrow{b}\) có tọa độ là ?

3. Cho A(3;-2) , B (-5;4 ) và C \(\left(\frac{1}{3};0\right)\). Ta có \(\overrightarrow{AB}=x\overrightarrow{AC}\) tìm giá trị của x

4, Trên trục x'Ox cho 2 điểm A,B lân lượt có tọa dộ là a, b. M là điểm thỏa mãn \(\overrightarrow{MA}=k\overrightarrow{MB},k\ne1\). Khi đó tọa độ điểm M là

5, Trong mặt phẳng Oxy , cho \(\overrightarrow{a}=\left(2,1\right);\overrightarrow{b}=\left(3,4\right);\overrightarrow{c}=\left(7,2\right)\)Tìm m,n để A,B,C thẳng hàng
*Minh mới học phần này cũng chưa hiểu lắm nên các bạn giải kĩ giúp mình. Cảm ơn nhiều <3

2
18 tháng 8 2019

Hok nhanh phết, chưa j đã đến phần toạ độ vecto r

1/ \(\overrightarrow{MB}=\left(x_B-x_M;y_B-y_M\right)=\left(2-x_M;3-y_M\right)\)

\(\Rightarrow2\overrightarrow{MB}=\left(4-2x_M;6-2y_M\right)\)

\(\overrightarrow{3MC}=\left(3x_C-3x_M;3y_C-3y_M\right)=\left(-3-3x_M;6-3y_M\right)\)

\(\Rightarrow2\overrightarrow{MB}+3\overrightarrow{MC}=\left(4-2x_M-3-3x_M;6-2y_M+6-3y_M\right)=0\)

\(\Leftrightarrow\left(1-5x_M;12-5y_M\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-5x_M=0\\12-5y_M=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=\frac{1}{5}\\y_M=\frac{12}{5}\end{matrix}\right.\Rightarrow M\left(\frac{1}{5};\frac{12}{5}\right)\)

18 tháng 8 2019

2/ \(\overrightarrow{m}=2\left(1;2\right)+3\left(3;4\right)=\left(2+9;4+12\right)=\left(11;16\right)\)

3/ \(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-5-3;4+2\right)=\left(-8;6\right)\)

\(\overrightarrow{AC}=\left(x_C-x_A;y_C-y_A\right)=\left(\frac{1}{3}-3;0+2\right)=\left(-\frac{8}{3};2\right)\)

\(\Rightarrow x=\frac{\overrightarrow{AB}}{\overrightarrow{AC}}=\frac{\left(-8;6\right)}{\left(-\frac{8}{3};2\right)}=3\)

Câu 4 tương tự

Câu 5 vt lại đề bài nhé bn, nghe nó vô lý sao á, m,n ở đâu ra vậy, cả A,B,C nx

16 tháng 2 2020

mọi người giúp với!!!!

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

6 tháng 1 2017

Gọi M(x;y)

Ta có : \(\overrightarrow{AB}\)= (3;-2) và \(\overrightarrow{MA}\) =( -x; 3-y)

Theo bài: \(\overrightarrow{AB}\) =-2\(\overrightarrow{MA}\) <---->(3;-2) = -2( -x;3-y)

<----> \(\left\{\begin{matrix}3=-2x\\-2=-6+2y\end{matrix}\right.\)

Gỉai ra được x= -3/2 và y= 2 . Suy ra M (-3/2;2)

NV
23 tháng 1 2021

\(\left\{{}\begin{matrix}\overrightarrow{PM}=\left(-1-a;2-b\right)\\3\overrightarrow{PN}=3\left(1-a;-b\right)=\left(3-3a;-3b\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-1-a=3-3a\\2-b=-3b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

10 tháng 12 2018

a) Gọi \(D\left(x;y\right)\)

\(2\overrightarrow{DA}=\left(20-2x;10-2y\right)\\ 3\overrightarrow{DB}=\left(9-3x;6-3y\right)\\ -\overrightarrow{DC}=\overrightarrow{CD}=\left(x-6;y+5\right)\)

\(\Rightarrow\left\{{}\begin{matrix}20-2x+9-3x+x-6=0\\10-2y+6-3y+y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{23}{4}\\y=\dfrac{21}{4}\end{matrix}\right.\)

10 tháng 12 2018

b)\(\overrightarrow{AF}=\left(-15;3\right)\\\overrightarrow{AB}=\left(-7;-3\right) \\ \overrightarrow{AC}=\left(-4;-10\right)\\\overrightarrow{AF}=a\overrightarrow{AB}+bAC\Rightarrow\left\{{}\begin{matrix}-7a-4b=-15\\-3a-10b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{81}{29}\\b=-\dfrac{33}{29}\end{matrix}\right.\)