K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2021

A B C D H I (1;-2) ( 133 37 ; 58 37 ) BD:2x+y-4=0

1. \(\overrightarrow{AH}\left(\frac{96}{37};\frac{16}{37}\right)\). AB và CD cùng vuông góc với AH => AB,CD có VTPT cùng phương với vt AH

Đường thẳng AB: đi qua A(1;-2), VTPT (6;1) => \(AB:6\left(x-1\right)+\left(y+2\right)=0\Leftrightarrow6x+y-4=0\)

Đường thẳng CD: đi qua H(133/37;-58/37), VTPT (6;1)

=>  \(CD:6\left(x-\frac{133}{37}\right)+\left(y+\frac{58}{37}\right)=0\Leftrightarrow6x+y-20=0\)

2. Xét hệ \(\hept{\begin{cases}2x+y=4\\6x+y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=4\end{cases}\Rightarrow}B\left(0;4\right)}\)

\(\hept{\begin{cases}2x+y=4\\6x+y=20\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}\Rightarrow}D\left(4;-4\right)}\)

BD và AC có trung điểm là \(I\left(2;0\right)\), suy ra \(C\left(3;2\right)\).

3. Ta có: \(MA^2+MC^2=2MI^2+\frac{AC^2}{2};MB^2+MD^2=2MI^2+\frac{BD^2}{2}\)

\(\Rightarrow MA^2+MB^2+MC^2+MD^2=4MI^2+\frac{AC^2+BD^2}{2}\ge\frac{AC^2+BD^2}{2}\)(không đổi)

Vậy biểu thức đạt Min khi M trùng với I(3;2).

19 tháng 5 2021

1. →AH(9637 ;1637 ). AB và CD cùng vuông góc với AH => AB,CD có VTPT cùng phương với vt AH

Đường thẳng AB: đi qua A(1;-2), VTPT (6;1) => AB:6(x−1)+(y+2)=0⇔6x+y−4=0

Đường thẳng CD: đi qua H(133/37;-58/37), VTPT (6;1)

=>  CD:6(x−13337 )+(y+5837 )=0⇔6x+y−20=0

2. Xét hệ {

2x+y=4
6x+y=4

⇔{

x=0
y=4

⇒B(0;4)

{

2x+y=4
6x+y=20

⇔{

x=4
y=−4

⇒D(4;−4)

BD và AC có trung điểm là I(2;0), suy ra C(3;2).

3. Ta có: MA2+MC2=2MI2+AC22 ;MB2+MD2=2MI2+BD22 

⇒MA2+MB2+MC2+MD2=4MI2+AC2+BD22 ≥AC2+BD22 (không đổi)

Vậy biểu thức đạt Min khi M trùng với I(3;2).

17 tháng 5 2021

1. \(\left|\frac{2x^2-x}{3x-4}\right|\ge1\) Điều kiện: \(x\ne\frac{4}{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2-x}{3x-4}\ge1\\\frac{2x^2-x}{3x-4}\le-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{x^2-2x+2}{3x-4}\ge0\\\frac{x^2+x-2}{3x-4}\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x>\frac{4}{3}\\x\in(-\infty;-2]U[1;\frac{4}{3})\end{cases}}\Leftrightarrow x\in(-\infty;-2]U[1;+\infty)\backslash\left\{\frac{4}{3}\right\}\)

2.\(\hept{\begin{cases}x^2\le-2x+3\left(1\right)\\\left(m+1\right)x\ge2m-1\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x^2+2x-3\le0\Leftrightarrow-3\le x\le1\)

+) Nếu \(m=-1\) thì (2) vô nghiệm, suy ra \(m\ne-1\)

+) Nếu \(m>-1\) thì \(\left(2\right)\Leftrightarrow x\ge\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=1\Leftrightarrow m=2>-1\)

+) Nếu \(m< -1\)thì \(\left(2\right)\Leftrightarrow x\le\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=-3\Leftrightarrow m=-\frac{2}{5}< -1\)

Vậy \(m=\left\{\frac{-2}{5};2\right\}\)

19 tháng 5 2021

1. |2x2−x3x−4 |≥1 Điều kiện: x≠43 

⇔[

2x2−x3x−4 ≥1
2x2−x3x−4 ≤−1

⇔[

x2−2x+23x−4 ≥0
x2+x−23x−4 ≤0

⇔[

x>43 
x∈(−∞;−2]U[1;43 )

⇔x∈(−∞;−2]U[1;+∞)\{43 }

2.{

x2≤−2x+3(1)
(m+1)x≥2m−1(2)

(1)⇔x2+2x−3≤0⇔−3≤x≤1

10 tháng 12 2023

a) Ta có \(\lim\limits_{x\rightarrow-\infty}\dfrac{4x+1}{-x+1}=\lim\limits_{x\rightarrow-\infty}\left(\dfrac{-4+\dfrac{1}{x}}{1+\dfrac{1}{x}}\right)=-4\)

b) Ta có \(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\dfrac{x^2-x-2}{x-2}=\lim\limits_{x\rightarrow2}\left(\dfrac{\left(x+1\right)\left(x-2\right)}{x-2}\right)\)

\(=\lim\limits_{x\rightarrow2}\left(x+1\right)=2+1=3\)

 Để hàm số đã cho liên tục tại \(x=2\) thì \(\lim\limits_{x\rightarrow2}f\left(x\right)=f\left(2\right)=m\) hay \(m=3\).

i:

x-2-1012
y1/41/2124

ii:

Hàm số liên tục và đồng biến trên R

\(\lim\limits_{x\rightarrow+\infty}2^x=+\infty;\lim\limits_{x\rightarrow-\infty}2^x=0\)

Tập giá trị: \((0;+\infty)\)

b: 

bảng giá trị:

x-2-1012
y4211/21/4

 

loading...

Hàm số liên tục và nghịch biến trên R

\(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{2}\right)^x=0;\lim\limits_{x\rightarrow-\infty}\left(\dfrac{1}{2}\right)^x=+\infty\)

Tập giá trị: (0;+\(\infty\))

NV
21 tháng 12 2020

Đường tròn ngoại tiếp tam giác ABC là ảnh của đường tròn (T) qua phép vị tự tâm O tỉ số \(k=2\)

\(\Rightarrow\) Phương trình đường tròn ngoại tiếp tam giác:

\(\left(x-2\right)^2+\left(y+1\right)^2=25\)

(Tọa độ tâm nhân 2 lần và bán kính nhân 2 lần)

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

27 tháng 4 2022

74630:243

27 tháng 4 2022

o

NV
13 tháng 5 2019

Bài 1: dưới mẫu không biết biểu thức là gì

Bài 2:

Gọi \(M\in d\Rightarrow M\left(1+2m;3-m\right)\)

\(\Rightarrow\overrightarrow{AM}=\left(2m;5-m\right)\)

\(\Rightarrow AM^2=\overrightarrow{AM}^2=4m^2+\left(5-m\right)^2=25\)

\(\Leftrightarrow5m^2-10m+25=25\)

\(\Leftrightarrow5m\left(m-2\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(1;3\right)\\M\left(5;1\right)\end{matrix}\right.\)

13 tháng 5 2019

@Nguyễn Việt Lâm dưới mẫu là 2x^2-mx +2

18 tháng 5 2021

I B A C M D

Đường tròn \(\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=25\) có tâm \(I\left(1;1\right)\) và bán kính \(R=5\)

\(\overrightarrow{IA}=\left(6;8\right)\Rightarrow IA=10=2R\)=> Đường tròn (C) chia đôi IA tại C

Gọi D là trung điểm IC, ta có: \(\frac{ID}{IM}=\frac{1}{2}=\frac{IM}{IA}\)=> \(\Delta\)IDM ~ \(\Delta\)IMA (c.g.c), từ đây MA=2MD

Suy ra \(P=2\left(MD+MB\right)\ge2BD\)(không đổi)

Dấu "=" xảy ra khi M thuộc đoạn BD hay M là giao điểm của đoạn BD với (C) 

*) Tìm M:

Ta có: C là trung điểm IA => \(C\left(4;5\right)\), D là trung điểm IC => \(D\left(\frac{5}{2};3\right)\)

\(\overrightarrow{BD}=\left(\frac{5}{2};-5\right)\Rightarrow BD:\hept{\begin{cases}x=\frac{5}{2}t\\y=8-5t\end{cases}}\); vì M thuộc BD nên \(M\left(\frac{5}{2}t;8-5t\right)\)

\(\overrightarrow{IM}=\left(\frac{5}{2}t-1;7-5t\right)\Rightarrow IM^2=\left(\frac{5}{2}t-1\right)^2+\left(7-5t\right)^2=R^2=25\)

\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=\frac{2}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}M\left(5;-2\right)\\M\left(1;6\right)\end{cases}}\)

Nếu \(M\left(5;-2\right)\)thì \(\overrightarrow{MB}=\left(-5;10\right);\overrightarrow{MD}=\left(-\frac{5}{2};5\right)\Rightarrow\overrightarrow{MB}=2\overrightarrow{MD}\)=> M nằm ngoài đoạn BD (L)

Vậy \(M\left(1;6\right)\).