K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
21 tháng 6 2016
Gọi I là trung điểm của DH. Dễ thấy tứ giác ABMI là hình bình hành, suy ra I là trực tâm của tam giác ADM. Từ đó suy ra BM vuông góc với DM
Phương trình BM:
\(\widehat{DM}=\left(\frac{22}{5}-2;\frac{14}{5}-2\right)=\left(\frac{12}{5};\frac{4}{5}\right)\)//(3;1)
(BM):\(3\left(x+\frac{22}{5}\right)+1\left(y-\frac{14}{5}\right)=0\)⇔(BM):3x+y−16=0
Tọa độ B là nghiệm hệ
\(\begin{cases}3-2y+4=0\\3x+y-16=0\end{cases}\)<=> \(\begin{cases}x=4\\y=4\end{cases}\)=>B(4;4)
Gọi K là giao điểm của BD và AC. Ta có \(\overrightarrow{KB}=-\frac{1}{2}\overrightarrow{KD}\)
Tọa độ K
\(\begin{cases}x_K=\frac{4+\frac{1}{2}.2}{1+\frac{1}{2}}=\frac{10}{3}\\y_K=\frac{4+\frac{1}{2}.2}{1+\frac{1}{2}}=\frac{10}{3}\end{cases}\)=> K(\(\frac{10}{3};\frac{10}{3}\))
Phương trình AC:
\(\overrightarrow{KM}=\left(\frac{16}{15};-\frac{8}{15}\right)\)//(2;−1)
(AC):x+2y−10=0
Phương trình DI:
(DI):2(x−2)−(y−2)=0⇔(DI):2x−y−2=0
Tọa độ H là nghiệm hệ
\(\begin{cases}x+2y-10=0\\2x-y-2=0\end{cases}\)<=>\(\begin{cases}x=\frac{14}{5}\\y=\frac{18}{5}\end{cases}\)
Tọa độ điểm C→C(6;2)
Ta có
\(\overrightarrow{BA}=\frac{1}{2}\overrightarrow{CD}\),<=>\(\begin{cases}x_A=\frac{1}{2}\left(2-6\right)+4=2\\y_A=\frac{1}{2}\left(2-2\right)+4=4\end{cases}\)→A(2;4)
HP
15 tháng 3 2021
Phương trình đường vuông góc kẻ từ M đến d là \(2x+y-6=0\)
Hình chiếu của M trên d có tọa độ là nghiệm của hệ:
\(\left\{{}\begin{matrix}x-2y+1=0\\2x+y-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)
29 tháng 4 2023
d: 4x-3y+5=0
=>VTPT là (4;-3) và (d) đi qua A(1;3)
=>VTCP là (3;4)
PTTS là:
x=1+3t và y=3+4t
=>N(3t+1;4t+3)
NM=1
=>\(\sqrt{\left(3t+1+1\right)^2+\left(4t+3-2\right)^2}=1\)
=>9t^2+12t+4+16t^2+8t+1=1
=>25t^2+20t+4=0
=>(5t+2)^2=0
=>t=-2/5
=>N(-1/5;-3/5)
Gọi \(AH\) là hình chiếu của \(A\) trên \(d\)
\(\Rightarrow AH:-2x+4y+c'=0\)
AH đi qua \(A\left(1;1\right)\Rightarrow-2.1+4.1+c'=0\)
\(\Rightarrow c'=-2\)
\(\Rightarrow\) phương trình \(AH\) là : \(-2x+4y-2=0\Rightarrow-x+2y-1=0\)
Tọa độ H là nghiệm của hệ phương trình :
\(\left\{{}\begin{matrix}-x+2y-1=0\\4x+2y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{3}{10}\end{matrix}\right.\)
\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)
Gọi \(\left(d'\right)\) là đường thẳng qua A và vuông góc với (d). Do (d) có VTPT \(\overrightarrow{n_d}=\left(4;2\right)\)
\(\Rightarrow\) \(\left(d'\right)\) có VTPT \(\overrightarrow{n_{d'}}=\left(2;-4\right)\) hay \(\left(d'\right):2x-4y+m=0\) \(\left(m\inℝ\right)\)
Mà \(A\left(1;1\right)\in\left(d'\right)\) nên \(2-4+m=0\Leftrightarrow m=2\). Vậy đường thẳng qua A và vuông góc với \(d\) có pt là \(2x-4y+2=0\) hay \(x-2y+1=0\)
Do đó hình chiếu vuông góc H của A lên d chính là giao điểm của d' và d. Nếu \(H\) có tọa độ \(\left(x_H;y_H\right)\) thì \(x_H;y_H\) thỏa mãn hệ phương trình \(\left\{{}\begin{matrix}x_H-2y_H+1=0\\4x_H+2y_H+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_H=-\dfrac{2}{5}\\y_H=\dfrac{3}{10}\end{matrix}\right.\)\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\).
Vậy hình chiếu của A lên d có tọa độ \(\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)