K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

a) thay x=1,y=5  vao (d):y=2mx+1

5=2m+1\(\Leftrightarrow2m=4\Leftrightarrow m=2\)

vay m=2 thi (d) di qua B(1;5)

b) hoanh do giao diem cua (d) va (P) la nghiem cua phuong trinh

-2x=2mx+1

\(\Leftrightarrow-2x-2mx-1=0\)

\(\left(\Delta\right)=(-2m)^{^{ }2^{ }}-4(-2)(-1)\)

\(\Delta=4m^{2^{ }}-8\)

\(\Leftrightarrow m^2>2\Leftrightarrow m>\mp\sqrt{2}\)

ap dung he thuc vi- et

x1+x2=-m

x1x2=1/2

vi x12+x22+4(x1+x2)=0

(x1+x2 -2x1x2 +4(x1+x2)=0

(-m)2-2.1/2+4(-m)=0

m2-1-4m=0

m2-4m-1=0

\(\Delta=20\)

\(\Delta>0\Rightarrow\)phuong trinh co hai nghiem phan biet

m1=\(2+\sqrt{5}\)(tm)

m2=2-\(\sqrt{5}\)tm)

vay m=\(2+\sqrt{5};2-\sqrt{5}\)thi thoa man x12+x22+4(x1+x2)

22 tháng 4 2021

Phương trình hoành độ giao điểm là :

\(-x^2=mx+2\)

\(\Leftrightarrow x^2+mx+2=0\)

Lại có : \(\Delta=m^2-8>0\)

Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=2\end{matrix}\right.\)

\(\left(x1+1\right)\left(x2+1\right)=0\)

\(\Leftrightarrow x1x2+x1+x1+1=0\)

\(\Leftrightarrow2-m+1=0\Leftrightarrow m=3\)

 

x2=mx+2−x2=mx+2

x2+mx+2=0⇔x2+mx+2=0

chúng ta sẽ lại có : Δ=m28>0Δ=m2−8>0

Theo định lí Vi - et ta có :

{x1+x2=mx1x2=2{x1+x2=−mx1x2=2

\(\trái(x1+1\phải)\trái(x2+1\phải)=0\)

x1x2+x1+x1+1=0⇔x1x2+x1+x1+1=0

2m+1=0m=3

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
a. Để $(d)$ đi qua $A(1;0)$ thì:
$y_A=2x_A-m+3$

$\Leftrightarrow 0=2.1-m+3=5-m$

$\Leftrightarrow m=5$

b.

PT hoành độ giao điểm:

$x^2-(2x-m+3)=0$

$\Leftrightarrow x^2-2x+m-3=0(*)$

Để $(P), (d)$ cắt nhau tại 2 điểm pb thì $(*)$ phải có 2 nghiệm pb $x_1,x_2$

Điều này xảy ra khi:

$\Delta'=1-(m-3)>0\Leftrightarrow 4-m>0\Leftrightarrow m< 4$

Áp dụng định lý Viet: $x_1+x_2=2$ và $x_1x_2=m-3$

Khi đó:
$x_1^2-2x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-(x_1+x_2)x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-x_2^2=-12$

$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$

$\Rightarrow x_1=-2; x_2=4$

$m-3=x_1x_2=(-2).4=-8$

$\Leftrightarrow m=-5$ (tm)

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

NM
20 tháng 3 2021

xét phương trình hoành độ giao điểm

\(x^2-mx+m-1=0\Leftrightarrow\left(x-1\right)\left(x-m+1\right)=0\)

vậy khi m=-2 thì tọa độ hai giao điểm là \(\hept{\begin{cases}x=1,y=1\\x=-3,y=9\end{cases}}\)

b. ta có \(\left|x_1\right|+\left|x_2\right|=1+\left|m-1\right|=4\Leftrightarrow\left|m-1\right|=3\Leftrightarrow\orbr{\begin{cases}m=4\\m=-2\end{cases}}\)

b: Phương trình hoành độ giao điểm là:

\(\dfrac{3}{2}x^2-mx-2=0\)

\(\Leftrightarrow3x^2-2mx-4=0\)

a=3; b=-2m; c=-4

Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-4}{3}=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=36\)

=>m=9 hoặc m=-9