Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta có: \(\left\{{}\begin{matrix}a=\frac{4\sqrt{2}}{2}=2\sqrt{2}\\b=c\end{matrix}\right.\)
\(\Rightarrow a^2=b^2+c^2=2b^2\)
\(\Rightarrow b^2=\frac{a^2}{2}=4\)
Phương trình elip: \(\frac{x^2}{8}+\frac{y^2}{4}=1\)
a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).
Phương trình chính tăc của (E) có dạng
\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)
Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)
\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)
Và \({a^2} = {b^2} + {c^2} = {b^2} + 3\)
Thay vào (1) ta được :
\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)
\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)
Suy ra \({a^2} = 4\)
Ta có a = 2 ; b = 1.
Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)
(0 ; -1) và (0 ; 1).
b) Phương trình chính tắc của (E) là :
\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)
c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).
Phương trình tung độ giao điểm của \(\Delta\) và \((E)\) là :
\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)
Suy ra tọa độ của C và D là :
\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\) và \(\left( {\sqrt 3 ;{1 \over 2}} \right)\)
Vậy CD = 1.
a) \(\left(E\right):\dfrac{x^2}{100}+\dfrac{y^2}{36}=1\)
b) \(\left(E\right):\dfrac{x^2}{169}+\dfrac{y^2}{25}=1\)
a) Từ giả thiết ta có \(a = 5,b = 4\)
Suy ra phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\)
b) Ta có: \(a = 5,c = 3 \Rightarrow b = \sqrt {{a^2} - {c^2}} = \sqrt {{5^2} - {3^2}} = 4\)
Suy ra phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\)
c) Từ giả thiết ta có: \(2a = 16,2b = 12 \Rightarrow a = 8,b = 6\)
Suy ra phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{36}} = 1\)
d) Từ giả thiết ta có: \(2a = 20,2c = 12 \Rightarrow a = 10,c = 6 \Rightarrow b = \sqrt {{a^2} - {c^2}} = \sqrt {{{10}^2} - {6^2}} = 8\)
Suy ra phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\)
Do 2 đỉnh trên trục nhỏ và 2 tiêu điểm tạo thành hình vuông \(\Rightarrow b=c\)
Mặt khác diện tích hình vuông bằng 32 \(\Rightarrow\dfrac{1}{2}.2b.2c=32\Rightarrow b^2=16\)
\(\Rightarrow a^2=b^2+c^2=2b^2=32\)
Phương trình: \(\dfrac{x^2}{32}+\dfrac{y^2}{16}=1\)
Ta có: độ dài trục nhỏ là 8 nên 2b = 8 => b= 4.
Độ dài tiêu cự là 10 nên 2c = 10 => c= 5.
Lại có : a2= b2+ c2= 16+ 25= 41
Vậy phương trình của Elip là: x 2 41 + y 2 16 = 1
Chọn D.
Chọn A.
Độ dài trục lớn bằng 10 ⇒ 2a = 10 ⇔ a = 5, a 2 = 25
Độ dài tiêu cự bằng 6 ⇒ 2c = 6 ⇔ c = 3
Ta có: a 2 - b 2 = c 2 ⇒ b 2 = a 2 - c 2 = 5 2 - 3 2 = 16
Vậy phương trình của elip (E) là:
Ta có: độ dài trục lớn là 10 nên 2a= 10 => a= 5.
Độ dài tiêu cự là 6 nên 2c= 6 => c= 3
Ta có: b2 = a2- c2= 25- 9= 16 => b= 4
Vậy phương trình của Elip là: x 2 25 + y 2 16 = 1
Chọn A.