Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng công thức : căn của (x1-x2)^2 + (y1-y2)^2 là ra khoảng cách giữa 2 điểm, tìm 3 khoảng cách rồi suy ra tam giác đều
a: vecto AB=(-2;-3)=(2;3)
=>VTPT là (-3;2)
Phương trình đường thẳng AB là:
-3(x-0)+2(y-3)=0
=>-3x+2y-6=0
=>3x-2y+6=0
vecto AC=(2;-3)
=>VTPT là (3;2)
Phương trình AC là:
3(x-2)+2(y-0)=0
=>3x+2y-6=0
vecto BC=(4;0)
=>vtpt là (0;-4)
Phương trình BC là;
0(x-2)+(-4)(y-0)=0
=>-4y=0
=>y=0
b: \(AB=\sqrt{\left(-2\right)^2+3^2}=\sqrt{13}\)
\(AC=\sqrt{\left(2-0\right)^2+\left(0-3\right)^2}=\sqrt{13}\)
\(BC=\sqrt{\left(2+2\right)^2+\left(0-0\right)^2}=4\)
\(C_{ABC}=\sqrt{13}+\sqrt{13}+4=4+2\sqrt{13}\)
\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{13+13-4^2}{2\cdot\sqrt{13}\cdot\sqrt{13}}=\dfrac{5}{13}\)
=>sin BAC=căn 1-(5/13)^2=căn 144/169=12/13
\(S_{BAC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot\dfrac{12}{13}=\dfrac{12}{13}\cdot13=12\)