Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(Cm\right)\) có tâm I(m;-2m)luôn thuộc đường thẳng (d) 2x+y=0 và có bán kính R=1
Vậy \(\left(Cm\right)\) luôn tiếp xúc với đường thẳng cố định, đó là tiếp tuyến của\(\left(Cm\right)\) song song với (d)
b,\(0< |m|< \dfrac{2}{\sqrt{5}}\)
Đồ thị hàm số nhận Oy làm trục đối xứng khi nó là hàm chẵn
Dễ dàng nhận ra miền xác định của hàm số là 1 miền đối xứng
Khi x thuộc TXĐ, ta có:
\(f\left(-x\right)=\frac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\) (tất nhiên \(m\ne\pm1\))
\(f\left(-x\right)=f\left(x\right)\) \(\forall x\in D\)
\(\Leftrightarrow\frac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}=\frac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\) \(\forall x\in D\)
\(\Leftrightarrow\left(m^2+m-2\right)\sqrt{2018+x}+\left(m^2+m-2\right)\sqrt{2018-x}=0\)
\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\end{matrix}\right.\)
Vậy \(m=-2\)
M thuộc trục hoành Ox nên \(M\left(x;0\right)\).
\(\overrightarrow{MA}\left(5-x;5\right);\overrightarrow{MB}\left(3-x;-2\right)\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\left(8-x;3\right)\)
Ta có:
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\sqrt{\left(8-x\right)^2+3^2}\ge\sqrt{3^2}=3\).
Vậy giá trị nhỏ nhất của \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) bằng 3 khi x = 8 hay \(M\left(8;0\right)\).
M \(\varepsilon\Delta\)=> M ( 1+ t; 2 + t)
MA2 = (t + 2)2 + t2 = 2 t2 + 4t + 4
MB2 = (t - 2)2 + (t + 1)2 = 2t2 - 2t + 5
MA2 +MB2 = 2t2 + 4t + 4 + 2t2 - 2t + 5 = 4t2 + 2t + 9 = 4t2 + 2.2t.1/2 + 1/4 + 35/4
= ( 2t + 1/2 )2 + 35/4 >= 35/4
vậy min của MA2 + MB2 = 35/4 <=> t = -1/4 => M (3/4 ; 7/4)
#mã mã#