Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(C) có tâm \(I\left(1;1\right)\) bán kính \(R=2\)
\(\Delta//d\Rightarrow\) phương trình \(\Delta\) có dạng: \(3x-4y+c=0\)
Áp dụng định lý Pitago: \(d\left(I;\Delta\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=1\)
\(\Rightarrow\frac{\left|3.1-4.1+c\right|}{\sqrt{3^2+4^2}}=1\Leftrightarrow\left|c-1\right|=5\Rightarrow\left[{}\begin{matrix}c=6\\c=-4\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x-4y+6=0\\3x-4y-4=0\end{matrix}\right.\)
Do tính chất của đường tròn nên luôn có 2 đường thẳng đối xứng nhau qua tâm đường tròn thỏa mãn điều kiện bài toán, kiểu như trên hình, 2 dây cung cắt bởi 2 đường thẳng đối xứng qua tâm luôn dài bằng nhau
Chắc chắn cả 2 đáp án đều đúng, ko cái nào sai cả, nếu trong phương án chọn chỉ có 2 đáp án nằm riêng lẻ thì 1 là đáp án sai, 2 là bạn để ý kĩ lại dấu của 2 đáp án coi, có khi họ cho khác đi 1 chút xíu
1. Tìm cosin góc giữa 2 đg thẳng denta 1 : 10x +5y -1=0 và denta 2 : x = 2+t ; y = 1-t
\(\Delta\left(1\right):10x+5y-1=0\)
\(\Delta\left(2\right):\left\{{}\begin{matrix}x=2+t\\y=1-t\end{matrix}\right.\)
\(\Delta\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-\left(x-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-x+2\end{matrix}\right.\Leftrightarrow x+y-3=0\)
Ta có phương trình tổng quát của \(\Delta\left(2\right)\)là \(x+y-3=0\)
\(cos\left(\Delta\left(1\right),\Delta\left(2\right)\right)=\frac{\left|a_1.a_2+b_1.b_2\right|}{\sqrt{a_1^2+b_1^2}\sqrt{a_2^2+b_2^2}}\)
\(=\frac{\left|10+5\right|}{\sqrt{1+1}.\sqrt{100+25}}=\frac{15}{5\sqrt{10}}\)
Bấm SHIFT COS\(\left(\frac{15}{5\sqrt{10}}\right)\)=o'''
\(=18^o26'5,82''\)
bài 2,3,4 tương tự vậy.
Đường tròn (C) tâm \(O\left(2;3\right)\) bán kính \(R=10\)
Gọi I là trung điểm AB \(\Rightarrow IO\perp AB\)
\(\Rightarrow IO=d\left(O;AB\right)=\dfrac{\left|3.2-4.3+1\right|}{\sqrt{3^2+4^2}}=1\)
Áp dụng định lý Pitago:
\(IA=\sqrt{OA^2-OA^2}=\sqrt{100-1}=3\sqrt{11}\)
\(\Rightarrow AB=2IA=6\sqrt{11}\)
14.
\(\overrightarrow{AB}=\left(-3;10\right)\Rightarrow\) đường thẳng AB nhận \(\left(10;3\right)\) là 1 vtpt
Phương trình AB:
\(10\left(x-3\right)+3\left(y+4\right)=0\Leftrightarrow10x+3y-18=0\)
16.
Do d song song denta nên d nhận \(\left(3;-2\right)\) là 1 vtpt
Phương trình d:
\(3\left(x-2\right)-2\left(y-1\right)=0\Leftrightarrow3x-2y-4=0\)
17. Cho d vuông góc denta nên d nhận \(\left(1;-1\right)\) là 1vtpt
Phương trình d:
\(1\left(x-4\right)-1\left(y+1\right)=0\Leftrightarrow x-y-5=0\)
9. Cho đg thẳng d 3x +4y -5=0 và 2 điểm A(1;3) , B(2;m). Định m để A và B nằm cùng phía đối với d.
Hai điểm A và B nằm cùng phía với (d)
\(\Leftrightarrow\)(3.1+4.3-5).(3.2+4.m-5)>0
\(10\left(6+4m-5\right)>0\)
\(60+40m-50>0\Rightarrow m>-\frac{1}{4}\)
10. Cho tam giác ABC với A(1;3) , B(-2;4) ,C(-1;5) và đg thẳng d : 2x -3y +6=0. Đg thẳng d cắt cạnh nào của tg ABC?
(bạn xem lại đề)
11. Khoảng cách từ điểm M (1;-1) đến đg thẳng denta 3x -4y -17=0 là:
\(d_{\left(M,\Delta\right)}=\frac{\left|ax_0+by_0+c\right|}{\sqrt{a^2+b^2}}=\frac{\left|3.1-4.\left(-1\right)-17\right|}{\sqrt{3^2+\left(-4\right)^2}}\)\(=2\)
Câu 12,13 tương tự vậy
14. Khoảng cách từ điểm M(0;2) đến đg thẳng denta x =1 +3t ; y = 2+4t là:
\(\Delta:\left\{{}\begin{matrix}x=1+3t\\y=2+4t\end{matrix}\right.\)
PTTQ của delta:\(4x-3y+2=0\)
áp dụng ct:
\(d_{\left(M,\Delta\right)}=\frac{\left|ax_0+by_0+c\right|}{\sqrt{a^2+b^2}}=\frac{4}{5}\)
( bạn xem lại đáp án)
16. Tính diện tích tg ABC biết A(-2;1) , B(1;2) , C (2;-4)
sABC= 5,5
a/ \(R=d\left(A;\Delta\right)=\frac{\left|3.1+4.1-17\right|}{\sqrt{3^2+4^2}}=2\)
Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-1\right)^2=4\)
b/Có 2 trường hợp xảy ra: d đi qua trung điểm của BC và d song song BC
TH1: Gọi \(M\left(1;4\right)\) là trung điểm BC \(\Rightarrow\overrightarrow{AM}=\left(0;3\right)\Rightarrow\) đường thẳng d nhận \(\overrightarrow{n_d}=\left(1;0\right)\) là một vtpt
Phương trình d: \(1\left(x-1\right)+0\left(y-1\right)=0\Leftrightarrow x-1=0\)
TH2: \(\overrightarrow{BC}=\left(-4;4\right)\Rightarrow\) đường thẳng d nhận \(\overrightarrow{n_d}=\left(1;1\right)\) là 1 vtpt
Phương trình d: \(1\left(x-1\right)+1\left(y-1\right)=0\Leftrightarrow x+y-2=0\)