\(\left(x-1\right)^2+\left(y+1\right)^2=16...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

Ta thấy tâm vị tự \(I\left(1;-1\right)\) cũng là tâm của đường tròn \(\left(C\right)\). Do đó \(\left(C'\right),\left(C\right)\) đồng tâm

Suy ra tỉ số vị tự \(k=\frac{R'}{R}=\frac{IM}{R}=\frac{5}{4}\) thì \(\left(C'\right)\) đi qua M.

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

NV
25 tháng 8 2020

Đường tròn tâm \(A\left(1;-1\right)\) bán kính \(R=4\)

Do tâm vị tự trùng tâm đường tròn (tọa độ giống nhau)

\(\Rightarrow\) (C') là đường tròn tâm \(A\left(1;-1\right)\) bán kính \(R'=\left|k\right|.R=4\left|k\right|\)

Phương trình (C'):

\(\left(x-1\right)^2+\left(y+1\right)^2=16k^2\)

Do (C') qua M nên:

\(\left(4-1\right)^2+\left(3+1\right)^2=16k^2\)

\(\Rightarrow k^2=\frac{25}{16}\Rightarrow k=\pm\frac{5}{4}\)

24 tháng 5 2017

Dễ thấy bán kính của (C') bằng 4. Tâm I' của (C') là ảnh của tâm I(1;2) của (C) qua phép đồng dạng nói trên. Qua phép vị tự tâm O, tỉ số \(k=-2,I\) biến thành \(I_1\left(-2;-4\right)\). Qua phép đối xứng qua trục \(Ox\), \(I_1\) biến thành \(I'\left(-2;4\right)\).

Từ đó suy ra phương trình của (C') là \(\left(x+2\right)^2+\left(y-4\right)^2=16\)

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

Phép dời hình và phép đồng dạng trong mặt phẳng

31 tháng 3 2017

I' = {V_{(O,3)}}^{} (I) = (3; -9), I'' = {D_{Ox}}^{} (I') = ( 3;9). Đường tròn phải tìm có phương trình (x-3)^{2} + (y-9)^{2} = 36.

13 tháng 4 2019

Ta có A(3;−1) là tâm của (C) nên tâm A' của (C') là ảnh của A qua phép vị tự đã cho. Từ đó suy ra A′ = (−3;8). Vì bán kính của (C) bằng 3, nên bán kính của (C') bằng |−2|.3 = 6

Vậy (C') có phương trình: x   +   3 2   +   y   −   8 2   = 36 .

31 tháng 3 2017

Phép quay tâm O, góc , biến I thành I'(0;), phép vị tự tâm O, tỉ số biến I' thành I'' = (0; .) = (0;2). Từ đó suy ra phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O, góc và phép vị tự tâm O, tỉ số biến đường tròn (I;2) thành đường tròn (I'';2). Phương trình của đường tròn đó là

x^{2} + (y-2)^{2} = 8

31 tháng 3 2017

Phép quay tâm O, góc , biến I thành I'(0;), phép vị tự tâm O, tỉ số biến I' thành I'' = (0; .) = (0;2). Từ đó suy ra phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O, góc và phép vị tự tâm O, tỉ số biến đường tròn (I;2) thành đường tròn (I'';2). Phương trình của đường tròn đó là

x^{2} + (y-2)^{2} = 8