K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

13 tháng 6 2018

Chọn B

Phương trình (S): xy+ z+ 4x - 6y + m = 0 là phương trình mặt cầu <=> m < 13

Khi đó (S) có tọa độ tâm I (-2;3;0) bán kính 

Gọi M (x;y;z) là điểm bất kỳ thuộc Δ.

Tọa độ M thỏa mãn hệ: 

Đặt y = t ta có: 

=> Δ có phương trình tham số: 

Δ đi qua điểm N (-2; 0; -3) và có vectơ chỉ phương 

 

Giả sử mặt cầu (S) cắt Δ tại hai điểm phân biệt A, B sao cho AB = 8Gọi (C) là đường tròn lớn chứa đường thẳng ΔKhi đó ICR- AC= 13 - m - 4= -m - 3

N (0;-3;-3)

Vậy mặt cầu (S) cắt Δ tại hai điểm phân biệt A, B sao cho AB = 8

<=> -m - 3 = 9 <=> m = -12

1 tháng 4 2018

Chọn C.

Trên mặt phẳng (Q): x + 2y - 2z + 1 = 0 chọn điểm M (-1;0;0).

Do (P) song song với mặt phẳng (Q) nên phương trình của mặt phẳng (P) có dạng: x + 2y - 2z + D = 0 với D ≠ 1.

Vậy có hai mặt phẳng thỏa mãn: x + 2y – 2z + 10 = 0 và x + 2y -2z – 8 = 0.

4 tháng 1 2018

Chọn D.

Mặt cầu (S) có tâm I(-1;2;1) và bán kính

Do (P) song song với mặt phẳng (Q) nên phương trình của mặt phẳng (P) có dạng:

x + 2y – 2z + D = 0 với D ≠ 1.

Vì (P) tiếp xúc với mặt cầu (S) nên d(I;(P)) = R = 3

Vậy có hai mặt phẳng thỏa mãn: x + 2y – 2z – 10 = 0 và x + 2y – 2z + 8 = 0

NV
27 tháng 2 2021

a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)

b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)

\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)

c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)

\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)

Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q)...
Đọc tiếp

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).

(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q) là:

\(a)\left(x+3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(b)\left(x+3\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=\frac{4}{9}\)

\(c)\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(d)\left(x-3\right)^2+\left(y-1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

Câu 2: Cho mặt cầu (S): \(x^2+y^2+z^2-2x+2y+1=0\)và điểm \(M\left(0;-1;0\right).\)

Phương trình mặt phẳng (P) tiếp xúc với (S) tại M là:

\(a)2x+y-z+1=0.\)                     \(b)x=0.\)            

\(c)-x+y+2z+1=0.\)              \(d)x+y+1=0\)

Câu 3: Trong khai triển \(f\left(x\right)=\frac{1}{256}\left(2x+3\right)^{10}\)thành đa thức, hệ số của x8 là:

\(a)103680.\)            \(b)405.\)             \(c)106380.\)            \(d)504.\)

Câu 4: Tổng các nghiệm của phương trình \(2^{x^2-3}.5^{x^2-3}=0,01.\left(10^{x-1}\right)^3\)là:

\(a)3.\)            \(b)5.\)            \(c)0.\)            \(d)2\sqrt{2}.\)

 

1
21 tháng 6 2019

Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!

Link đây: Cộng đồng học tập online | Học trực tuyến

1. Gọi I là tâm của mặt cầu cần tìm

Vì I thuộc d

=> I( a; -1; -a)

Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:

d(I; (P))=d(I;(Q))

<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)

\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)

=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3

=> Phương trình mặt cầu:

\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

đáp án C.

2. Gọi I là tâm mặt cầu: I(1; -1; 0)

Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M

=> IM vuông góc vs mặt phẳng (P)

=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)

=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M

1(x-0)+0(y+1)+0(z-0) =0<=> x=0

đáp án B

3.

 \(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)

Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:

\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)

đáp án D

4.

pt <=>  \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)

\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)

\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)

=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5

Đáp án A

25 tháng 3 2020

a) Hai mặt phẳng cắt nhau, vì 1: 2: (-1) ≠ 2: 3: (-7)

b) Hai mặt phẳng cắt nhau, vì: 1: (-2): 1 ≠ 2: (-1): 4

c) Hai mặt phẳng song song, vì: 1/2=1/2=1/2 ≠ -1/3

d) Hai mạt phẳng cắt nhau, vì: 3: (-2): 3 ≠ 9: (-6): (-9)

e) Hai mặt phẳng trung nhau, vì: 1/10=-1/(-10)=2/20=-4/(-40).

           #rin

25 tháng 10 2018

21 tháng 10 2018

 Đáp án C

Phương pháp

Gọi H là hình chiếu của B trên mặt phẳng (Q) đi qua A và song song với (P). Khi đó

Cách giải

Gọi (Q) là mặt phẳng đi qua A và song song với (P) ta tìm được phương trình mặt phẳng (Q): (P): x-2y+2z-5=0, khi đó d  ∈ (Q)

Gọi H là hình chiếu của B trên (Q) ta có 

Phương trình đường thẳng d’ đi qua B và vuông góc với (Q) là

Vậy phương trình đường thẳng d cần tìm là d:

  x + 3 26 = y 11 = z - 1 2

23 tháng 7 2018

Đáp án B

Muốn khoảng cách giữa hai mặt phẳng (P) và (Q) lớn hơn 0 thì trước hết hai mặt phẳng đó phải song song (nếu hai mặt phẳng đó trùng nhau hoặc cắt nhau thì khoảng cách giữa chúng sẽ bằng 0). Do đó ta có: