Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 14:
a) Số chứa ít nhất 1 chữ số 1 thì số đó có thể chứa 1 chữ số 1 hoặc chứa 2 chữ số 1 hoặc số đó chứa tất cả các chữ số 1
- Có 900 số có 3 chữ số
- Tìm các số có 3 chữ số đều khác chữ số 1 => số đó chỉ được tạo thành từ các chữ số 0;2;3;..;9
Chữ số hàng trăm có 8 cách chọn (trừ đi chữ số 0 và 1)
Chữ số hàng chục có 9 cách chọn (trừ đi chữ số 1 ); chữ số hàng đơn vị cũng có 9 cách chọn
=> có 8.9.9 = 648 số có 3 chữ số đều khác 1
=> Số có 3 chữ số chứa ít nhất 1 chữ số 1 = Số các số có 3 chữ số - Số các số có 3 chữ số đều khác chữ sô 1 = 900 - 648 =252 số
b) Tương tự phần a:
- Có 9000 số có 4 chữ số
- Tìm các số có 4 chữ số đều khác chữ số 1
Chữ số hàng nghìn có 8 cách chọn; chữ số hàng trăm;chục , đơn vị đều có 9 cách chọn
=> Có 8.9.9.9 = 5832 số
=> Số các số có 4 chữ số chứa ít nhất 1 chữ số 1 = Số các số có 4 chữ số - Số các số có 4 chữ số đều khác chữ số 1 = 9000 - 5832 = 3168 số
a) Ta sẽ tính số số không chứa chữ số \(0\).
Tổng quát với số có \(n\)chữ số, số số không chứa chữ số \(0\)là \(9^n\).
Thật vậy, ta có: số cách chọn chữ số ở hàng thứ nhất là từ \(1\)đến \(9\)là \(9\)cách chọn.
Tương tự, số cách chọn các chữ số ở các hàng sau cũng như vậy.
Do đó từ \(1\)đến \(10000\)có số số không chứa chữ số \(0\)là: \(9+9^2+9^3+9^4=\frac{9^5-9}{8}=7380\).
Số số chứa chữ số \(0\)là: \(10000-7380=2620\).
b) Ta sẽ tính số số không chứa chữ số \(1\).
Tổng quát với số có \(n\)chữ số, số số không chứa chữ số \(1\)là: \(8.9^{n-1}\).
Thật vậy, ta có:
Để chọn hàng thứ \(n\)(hàng cao nhất), có \(8\)cách chọn (từ \(2\)đến \(9\)).
Để chọn hàng thứ \(n-1\)đến hàng thứ \(1\), mỗi hàng có \(9\)cách chọn (\(0\)và từ \(2\)đến \(9\)).
Do đó số số không chứa chữ số \(1\)là: \(8.9^{n-1}\).
Từ \(1\)đến \(10000\)có số số không chứa chữ số \(1\)là: \(8+8.9+8.9^2+8.9^3=6560\).
Số số chứa chữ số \(1\)là: \(10000-6560=3440\).
Do đó số số không chứa chữ số \(1\) nhiều hơn.