Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
a)Nếu a+b+c=9 thì abc chia hết cho 9 .Đúng.
b)Nếu a+b+c=18 thì abc chia hết cho 18. Sai.
c)Nếu abc chia hết cho 9 thì a+b+c=9. Đúng.
Câu c thì tùy có thể thì a+b+c=18 cx đc !
Rất vui khi đc giúp bn !
nếu a+b+c = 9 thì abc chia hết cho 9 - Đúng.
nếu a+b+c=18 thì abc chia hết cho 18 - Sai(Vì để 1 số chia hết cho 18 thì tổng các chữ số đó chia hết cho 9 và chữ số cuối là số chẵn.VD : 99 ko chia hết cho 18)
nếu abc chia hết cho 9 thì a+b+c = 9 - -Sai (Vì nếu abc chia hết cho 9 thì chỉ cần tổng a+b+c chia hết cho 9 là đủ)
Bấm đúng cho mk nếu bạn thấy đúng.Thanks
a) Đúng (hiển nhiên)
b) Sai vì ngay cả khi a+b+c chia hết cho 9;18 thì để chia hết THỰC SỰ, thì nó bắt buộc phải là số chẵn (“bắt buộc” ko thoả mãn đề bài)
c) Đáp án phụ thuộc vào việc a+b+c bằng 9 hay ko vì a+b+c=9 chia hết cho 9 và a+b+c=n (n chia hết cho 9;n khác 9) chia hết cho 9 đều chia hết cho 9
Cả hai khẳng định đều đúng vì nếu a=b thì a là ư của b và ngược lại
nếu a là Ư của b thì b chia hết cho a, b:a=c nên bchia hết cho c
suy ra b:a là ước của b
\(\overline{abc}+\overline{ab}+a=751\)
\(a.100+b.10+c+a.10+b.1+a.1=751\)
\(a.100+a.10+a.1+b.10+b.1+c=751\)
\(a.\left(100+10+1\right)+b.\left(10+1\right)+c=751\)
\(a.111+b.11+c=751\)
\(\overline{aaa}+\overline{bb}+c=751\)
Dễ thấy \(\overline{aaa}\) chỉ có thể là 666 .
Và ta thấy \(\overline{aaa}+\overline{bb}< 751\) và nhỏ hơn c đơn vị.
Vậy ta có \(\overline{bb}+c=751-666=85\).
Cũng như \(\overline{aaa}\) ta thấy \(\overline{bb}\) cũng chỉ có thể là 77.
Vậy c là 85-77=8
Vì a=6;b=7;c=8 nên \(\overline{abc}=678\)
\(a,\overline{abc}+\overline{ab}+a=751\\ \Leftrightarrow a.100+b.10+c+a.10+b+a=751\\ \Leftrightarrow aaa+bb=751\)
Tới đây thử chọn ra
\(b,\overline{ab}+9b\\ \Leftrightarrow10a=8b\\ \Leftrightarrow5a=4b\)
+)Chọn b=5 thì 5a=4.5
=>a=4
=>Số cần tìm là 45
+)Chọn b khắc 5 thì ko tìm đc giá trị nào thỏa mãn
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
a: đúng
b:sai
c:Sai
a,đúng
b,sai
c,sai