K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2021

a) Đúng

b) Đúng

c) Sai vì tích của hai số nguyên âm là số nguyên dương. Ví du (–13) .(–4) = 52

d) Đúng

19 tháng 1 2021

C sai

Vd:  -2×(-2) khác -4

        -2×(-2)=4

25 tháng 9 2018

con đĩ non

2 tháng 11 2016

kho qua

2 tháng 11 2016

kho thiet

14 tháng 2 2017

no thick z do danh dj eoeo

26 tháng 9 2020

a) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì p2 + 8 = 22 + 8 = 12 (không là số nguyên tố, loại)

* Xét p = 3 thì p2 + 8 = 32 + 8 = 17 (là số nguyên tố, thỏa mãn). Khi đó p2 + 2 = 32 + 2 = 11 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì p2 + 8 = (3k + 1)2 + 8 = 9k2 + 6k + 9 = 3 (3k2  + 2k + 3)\(⋮\)3 mà 3 (3k+2k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì p2 + 8 = (3k + 2)2 + 8 = 9k2 + 12k + 12 = 3 (3k2  + 6k + 4)\(⋮\)3 mà 3 (3k2  + 6k + 4) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và p2 + 8 là các số nguyên tố thì p2 + 2 là số nguyên tố (đpcm)

b) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì 8p2 + 1 = 8.22 + 1 = 33 (không là số nguyên tố, loại)

* Xét p = 3 thì 8p2 + 1 = 8.32 + 1 = 73 (là số nguyên tố, thỏa mãn). Khi đó 2p + 1 = 2.3 + 1 = 7 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 8(9k2 + 6k + 1) + 1 = 3(24k2 + 16k + 3)\(⋮\)3 mà 3(24k2 + 16k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 8(9k2 + 12k + 4) + 1 = 3(24k2 + 32k + 11)\(⋮\)3 mà 3(24k2 + 32k + 11) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và 8p2 + 1 là các số nguyên tố thì 2p + 1 là số nguyên tố (đpcm)

10 tháng 5 2018

ta có:\(\frac{a^2-4}{2x-5}=2+a\)

\(ĐKXĐ:x\ne\frac{5}{2}\)

\(\Rightarrow\left(2+a\right).\left(2x-5\right)=a^2-4\)

\(\Rightarrow2x-5=\frac{a^2-4}{a+2}=a-2\)

\(\Leftrightarrow x=\frac{a-3}{2}\)

vì x là số nguyên dương nhỏ hơn 2  nên x=1

\(\Leftrightarrow1=\frac{a-3}{2}\)

\(\Leftrightarrow a-3=2\)

\(\Leftrightarrow a=5\)

23 tháng 8 2017

Ta gọi :3SND lần lượt là\(N,N+1,N+2\left(N\in Z\right)\)

\(N\left(N+1\right)\left(N+2\right)=\left(N^2+N\right)\left(N+2\right)=N^3+2N^2+N^2+2N=N^3+3N^2+2N\)

\(N^3< N^3+3N^2+2N< N^3+3N^2+3N+1\)

\(\Rightarrow N^3< N^3+3N^2+2N< \left(N+1\right)^3\left(1\right)\)

Vì \(N\)là SND nên từ \(\left(1\right)\)

Ta có:\(n\left(n+1\right)\left(n+2\right)\)ko là LP của 1 STN

5 tháng 1 2017

297 đó nha 

6 tháng 1 2017

Bạn trên! 297 là hợp số mà?