Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì trong hình vẽ mặt sân được vẽ nghiêng nên nếu đo trực tiếp trong sách giáo khoa sẽ không đúng bằng góc thực tế.
Vẽ một tam giác bằng dụng cụ học tập trên giấy có một góc đúng bằng góc sút. Từ đó sử dụng dụng cụ học tập là thước đo góc để đo góc sút.
Gọi 3 đường cao là a,b,c còn 3 cạnh là x,y,z
Ta có x/2=y/3=z/4 (giả thiết) và x.a=y.b=z.c (1) (dựa vào công thức tính diện tích tam giác)
x/2=y/3=z/4=k thì x=2k, y=3k, z=4k thay vào (1) ta được:
2k.a=3k.b=4k.c suy ra a/6=b/4=c/3 (chia cho 12k)
Vậy 3 đường cao tương ứng tỉ lệ 6,3,4
Tam giác ABC có chu vi bằng 74cm, AC là cạnh lớn nhất. Đường phân giác của góc A chia cạnh BC thành hai đoạn tỉ lệ với 2:3; đường phân giác của góc C chia cạnh AB thành hai đoạn tỉ lệ với 4:5. Tính độ dài các cạnh của tam giác ABC.
AB + BC + AC = 74 (*)
Trong ∆ ABC phân giác AD → AB/AC = DB/DC = 2/3 (AC > AB)
→ AB = 2/3 . AC (1) , tương tự với phân giác CE ta suy ra
BC = 4/5 . AC (2) . Thế tất cả vào (*) ta được:
2/3 . AC + 4/5 . AC + AC = 74 → 37AC/15 = 74 → AC = 30cm
thế vào (1) và (2) ta được AB = 10cm, BC = 24cm
Làm ơn cho tớ hỏi đường cao có phải là đường cao ứng với cạnh huyền không?
Gọi độ dài hai cạnh góc vuông lần lượt là a(m),b(m)(ĐK: a>0;b>0)
Độ dài hai cạnh góc vuông tỉ lệ với 3 và 4 nên \(\dfrac{a}{3}=\dfrac{b}{4}=k\)
=>a=3k; b=4k
Theo đề, ta có: \(a^2+b^2=20^2\)
=>\(25k^2=400\)
=>\(k^2=16\)
=>k=4
=>a=3*4=12; b=4*4=16
Ta có tỉ lệ của độ rộng khung thành và khoảng cách hai cột gôn là: 7,32 : 10,98 : 14,64 = 2 : 3 : 4 nên độ dài cạnh của tam giác vẽ theo tỉ lệ 2 : 3 : 4.
Sử dụng thước đo góc, ta được \( \widehat C \approx 29^0 \) hay góc sút bằng khoảng \(29^0\).