K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2023

a.

\(DH\perp AB\left(gt\right)\Rightarrow\widehat{DHB}=90^0\Rightarrow D;H;B\) cùng thuộc đường tròn đường kính DB

\(\widehat{AEB}=90^0\) (góc nội tiếp chắn nửa đường tròn (O)) \(\Rightarrow\widehat{DEB}=90^0\)

\(\Rightarrow D;E;B\) cùng thuộc đường tròn đường kính DB

\(\Rightarrow\) Tứ giác BHDE nội tiếp đường tròn đường kính DB

b.

\(\widehat{ACB}=90^0\) (góc nội tiếp chắn nửa đường tròn (O))

\(\Rightarrow\widehat{ACH}=\widehat{ABC}\) (cùng phụ \(\widehat{BAC}\))

Mà \(\widehat{ABC}=\widehat{AEC}\) (cùng chắn cung AC của (O)

\(\Rightarrow\widehat{ACH}=\widehat{AEC}\)

Xét hai tam giác ADC và ACE có: \(\left\{{}\begin{matrix}\widehat{ACH}=\widehat{AEC}\left(cmt\right)\\\widehat{CAD}\text{ chung}\end{matrix}\right.\)

\(\Rightarrow\Delta ADC\sim\Delta ACE\left(g.g\right)\Rightarrow\dfrac{AD}{AC}=\dfrac{CD}{EC}\Rightarrow AD.EC=CD.AC\)

c.

Cũng theo cmt \(\Delta ADC\sim\Delta ACE\Rightarrow\dfrac{AC}{AE}=\dfrac{AD}{AC}\Rightarrow AD.AE=AC^2\)

Áp dụng hệ thức lượng trong tam giác vuông ABC với đường cao CH:

\(BC^2=BH.BA\)

\(\Rightarrow AD.AE+BH.BA=AC^2+BC^2=AB^2=2022^2\)

NV
2 tháng 4 2023

loading...

NV
22 tháng 4 2023

Đặt chu vi COH là \(P=OC+OH+CH\)

Ta có:

\(P=OC+OH+CH\le OC+\sqrt{2\left(OH^2+CH^2\right)}=OC+\sqrt{2OC^2}=OC\left(1+\sqrt{2}\right)=R\left(1+\sqrt{2}\right)\)

Dấu "=" xảy ra khi \(OH=CH\Rightarrow\Delta OCH\) vuông cân tại H

\(\Rightarrow\widehat{COH}=45^0\) hay C là điểm nằm trên cung AB sao cho OC hợp với AB 1 góc 45 độ

//Phía trên sử dụng BĐT \(a+b\le\sqrt{2\left(a^2+b^2\right)}\) để đánh giá

a: góc EHB+góc EDB=180 độ

=>BDHE nội tiếp

b: Xét ΔACE và ΔADC có

góc ACE=góc ADC

góc CAE chung

=>ΔACE đồng dạng với ΔADC

=>AC^2=AE*AD

10 tháng 4 2021

a) Chứng minh tứ giác IEHFIEHF nội tiếp được đường tròn.

Ta có ∠AEB=∠AFB=900∠AEB=∠AFB=900 (góc nội tiếp chắn nửa đường tròn) ;

⇒AE⊥EB,AF⊥EB⇒AE⊥EB,AF⊥EB hay BE⊥AI;AF⊥BI⇒∠IEH=∠IFH=900BE⊥AI;AF⊥BI⇒∠IEH=∠IFH=900.

Xét tứ giác IEHFIEHF có: ∠IEH+∠IFH=900+900=1800⇒∠IEH+∠IFH=900+900=1800⇒ Tứ giác IEHFIEHF là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 18001800).

b) Chứng minh ∠AIH=∠ABE∠AIH=∠ABE.

Cách 1:

Ta có IEHFIEHF là tứ giác nội tiếp (cmt) ⇒∠EIH=∠EFH⇒∠EIH=∠EFH (hai góc nội tiếp cùng chắn cung EHEH)

Hay ∠AIH=∠EFA.∠AIH=∠EFA.

Mà ∠EBA=∠EFA∠EBA=∠EFA (hai góc nội tiếp cùng chắn cung AFAF của (O)(O))

⇒∠AIH=∠ABE(=∠EFH).(dpcm)⇒∠AIH=∠ABE(=∠EFH).(dpcm)

Cách 2:

Xét tam giác IABIAB có hai đường cao AF,BEAF,BE cắt nhau tại H⇒HH⇒H là trực tâm tam giác IABIAB.

⇒IH⊥AB⇒IH⊥AB hay IK⊥ABIK⊥AB tại KK.

Xét tam giác vuông AIKAIK có: ∠AIK+∠IAK=900⇔∠AIH+∠IAB=900∠AIK+∠IAK=900⇔∠AIH+∠IAB=900.

Xét tam giác vuông ABEABE có: ∠ABE+∠EAB=900⇔∠ABE+∠IAB=900∠ABE+∠EAB=900⇔∠ABE+∠IAB=900.

Do đó ∠AIH=∠ABE∠AIH=∠ABE.

c) Chứng minh cos∠ABP=PK+BKPA+PBcos⁡∠ABP=PK+BKPA+PB.

Nối PA,PBPA,PB ta có ∠APB=900∠APB=900 (góc nội tiếp chắn nửa đường tròn).

Xét tam giác BPKBPK và tam giác BAPBAP có:

∠ABP∠ABP chung;

∠BKP=∠BPA=900;∠BKP=∠BPA=900;

⇒ΔBPK∼ΔBAP(g.g)⇒PKPA=BKPB⇒ΔBPK∼ΔBAP(g.g)⇒PKPA=BKPB (hai cặp cạnh tương ứng tỉ lệ).

Áp dụng tính chất dãy tỉ số bằng nhau ta có: PKPA=BKPB=PK+BKPA+PBPKPA=BKPB=PK+BKPA+PB (1).

Xét tam giác vuông BKPBKP ta có: cos∠ABP=cos∠KPB=BKPBcos⁡∠ABP=cos⁡∠KPB=BKPB (2).

Từ (1) và (2) ta có cos∠ABP=PK+BKPA+PBcos⁡∠ABP=PK+BKPA+PB.

d) Gọi SS là giao điểm cuả tia BFBF và tiếp tuyến tại AA của nửa đường tròn (O)(O). Khi tứ giác AHISAHIS nội tiếp được đường tròn, chứng minh EFEF vuông góc với EKEK.

Xét tứ giác AEHKAEHK có: ∠AEH+∠AKH=900+900=1800⇒∠AEH+∠AKH=900+900=1800⇒ Tứ giác AEHKAEHK là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 18001800).

⇒∠HEK=∠HAK=FAB⇒∠HEK=∠HAK=FAB (hai góc nội tiếp cùng chắn cung HKHK);

Lại có ∠FAB=∠FEB∠FAB=∠FEB (hai góc nội tiếp cùng chắn cung FBFB của (O)(O));

⇒∠HEK=∠FEB⇒EB⇒∠HEK=∠FEB⇒EB là phân giác của ∠FEK∠FEK ⇒∠FEK=2∠FEB=2∠FAB⇒∠FEK=2∠FEB=2∠FAB (3).

Ta có: {IH⊥AB(cmt);SA⊥AB(gt)⇒IH//SA⇒{IH⊥AB(cmt);SA⊥AB(gt)⇒IH//SA⇒ Tứ giác AHISAHIS là hình thang (Tứ giác có 2 cạnh đối song song).

Khi AHISAHIS là tứ giác nội tiếp thì ∠SAH+∠SIH=1800∠SAH+∠SIH=1800 (tổng hai góc đối của tứ giác nội tiếp) ;

Mà ∠SAH+∠AHI=1800∠SAH+∠AHI=1800 (hai góc trong cùng phía bù nhau) ;

⇒∠SIH=∠AHI⇒⇒∠SIH=∠AHI⇒ Tứ giác AHISAHISlà hình thang cân.

Do đó ∠ISA=∠SAH∠ISA=∠SAH (Tính chất hình thang cân) hay ∠BSA=∠SAF∠BSA=∠SAF.

Mà ∠SAF=∠SBA∠SAF=∠SBA (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AFAF );

⇒∠BSA=∠SBA⇒ΔSAB⇒∠BSA=∠SBA⇒ΔSAB vuông cân tại A⇒∠SBA=450A⇒∠SBA=450.

⇒ΔFAB⇒ΔFAB vuông cân tại F⇒∠FAB=450F⇒∠FAB=450 (4).

Từ (3) và (4) ta có ∠FEK=2∠FAB=2.450=900∠FEK=2∠FAB=2.450=900.

Vậy khi tứ giác AHISAHIS nội tiếp được đường tròn, chứng minh EFEF vuông góc với EKEK(đpcm).

1 tháng 7 2021

a, ta có : góc AEB = 90 độ

suy ra góc HEI = 90 độ

tương tự ta có góc HFI = 90 độ

suy ra : góc HEI + góc HFI = 180 độ 

suy ra IEHF nội tiếp đường tròn

b, góc AIH = AFE

mà góc ABE = góc AFE

suy ra góc AIH = góc ABE

 ta có hình sau :1590160365_lazi_5ec7ebed37692_lazi.jpeg

1590160386_lazi_5ec7ec0208d3d_lazi.jpeg

a: góc AEB=1/2*180=90 dộ

góc DHB+góc DEB=180 độ

=>DHBE nội tiếp