Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phương trình đường thẳng d qua M, N có dạng \(y=ax+b\)
Do d qua \(A\left(1;2\right)\Rightarrow2=a+b\Rightarrow b=2-a\)
Phương trình d: \(y=ax-a+2\)
Tọa độ M là giao của d với Ox :
\(\Rightarrow y_M=0\Rightarrow0=ax_M-a+2\Rightarrow x_M=\frac{a-2}{a}\Rightarrow OM=\left|\frac{a-2}{a}\right|\)
Tọa độ N là giao của d với Oy
\(\Rightarrow x_N=0\Rightarrow y_N=0.a-a+2=-a+2\Rightarrow ON=\left|-a+2\right|=\left|a-2\right|\)
\(T=\frac{1}{OM^2}+\frac{1}{ON^2}=\frac{1}{\left(\frac{a-2}{a}\right)^2}+\frac{1}{\left(a-2\right)^2}=\frac{a^2+1}{\left(a-2\right)^2}=\frac{5a^2+5}{5\left(a-2\right)^2}\)
\(T=\frac{a^2-4a+4+4a^2+4a+1}{5\left(a-2\right)^2}=\frac{\left(a-2\right)^2+\left(2a+1\right)^2}{5\left(a-2\right)^2}=\frac{1}{5}+\frac{\left(2a+1\right)^2}{5\left(a-2\right)^2}\ge\frac{1}{5}\)
\(\Rightarrow T_{min}=\frac{1}{5}\) khi \(a=-\frac{1}{2}\)
Ta có \(M\left(2;-1\right)\)
Gọi phương trình đường thẳng d qua M có dạng: \(y=ax+b\)
\(\Rightarrow-1=2a+b\Rightarrow b=-2a-1\)
\(\Rightarrow y=ax-2a-1\)
Để d cắt 2 trục tọa độ \(\Rightarrow a\ne\left\{0;-\dfrac{1}{2}\right\}\)
\(\Rightarrow A\left(\dfrac{2a+1}{a};0\right)\) ; \(B\left(0;-2a-1\right)\) \(\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2a+1}{a}\right|\) ; \(OB=\left|y_B\right|=\left|2a+1\right|\)
Ta có: \(S_{OMA}=\dfrac{1}{2}\left|y_M\right|.OA=\dfrac{1}{2}\left|\dfrac{2a+1}{a}\right|\)
\(S_{OMB}=\dfrac{1}{2}\left|x_M\right|.OB=\left|2a+1\right|\)
\(\Rightarrow\dfrac{1}{2}\left|\dfrac{2a+1}{a}\right|=\left|2a+1\right|\Leftrightarrow\dfrac{1}{2\left|a\right|}=1\Rightarrow\left[{}\begin{matrix}a=\dfrac{1}{2}\\a=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
Phương trình: \(y=\dfrac{1}{2}x-2\)
Theo Cô si 4x+\frac{1}{4x}\ge24x+4x1≥2 , đẳng thức xảy ra khi và chỉ khi 4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}4x=4x1=1⇔x=41). Do đó
A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016A≥2−x+14x+3+2016
A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014A≥4−x+14x+3+2014
A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014A≥x+14x−4x+1+2014=x+1(2x−1)2+2014≥2014
Hơn nữa A=2014A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.{x=412x−1=0 \Leftrightarrow x=\dfrac{1}{4}⇔x=41 .
Vậy GTNN = 2014
a) Thay x=-1 vào (P), ta được:
\(y=\left(-1\right)^2=1\)
Thay x=2 vào (P), ta được:
\(y=2^2=4\)
Vậy: M(-1;1) và N(2;4)
Gọi (d):y=ax+b là ptđt đi qua hai điểm M và N
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-3\\-a+b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Vậy: (d): y=x+2