Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vt pt dg thẳng đi qua A và B.. sau đó thay tọa độ của gốc tọa độ O vào thấy thỏa nên thẳng hàng
Đường thẳng OA có dạng: y=ax(d)
=>OA đi qua A=>-3=-4a=>a=3/4 =>(d): y=3/4x
Đường thẳng OB có dạng y=a'x(d')
=>OB đi qua B => 3/2=2a => a=3/4 =>(d'): t=3/4x
Suy ra: OA và OB trùng nhau =>O,A,B thẳng hàng
vì đồ thị của hàm số y = ax (a khác 0 ) là 1 đường thẳng đi qua góc tọa độ nên 3 điểm 0;m;n là 1 đường thẳng
Trước hết ta đi tìm phương trình đường thẳng MN.
Gọi phương trình đường thẳng MN là \(MN:y=ax+b\).
Do \(M\in MN\) nên \(2=-3a+b\) \(\Leftrightarrow b=3a+2\) (1)
Mặt khác \(N\in MN\) nên \(-2=3a+b\) (2)
Từ (1) và (2) \(\Rightarrow-2=3a+3a+2\) \(\Leftrightarrow6a=-4\) \(\Leftrightarrow a=-\dfrac{2}{3}\)
Từ đó \(\Rightarrow b=3.\left(-\dfrac{2}{3}\right)+2=0\) . Vậy đường thẳng MN chính là đường thẳng \(y=-\dfrac{2}{3}x\) đi qua gốc tọa độ O. Từ đây suy ra M, O, N thẳng hàng.
Muốn biết ba điểm có thẳng hàng hay không, ta xét chúng cùng thuộc một đồ thị hàm số hay không
Xét A(-3 ; 5)
=> xA = -3 ; yA = 5
=> 5 = a.(-3)
=> a = -5/3
=> A(-3 ; 5) thuộc đồ thị hàm số \(y=-\frac{5}{3}x\)( 1 )
Xét B( 2 ; -3 )
=> xB = 2 ; yB = -3
=> -3 = a.2
=> a = -3/2
=> B thuộc đồ thị hàm số \(y=-\frac{3}{2}x\)( 2 )
Xét C( 0, 6 ; -1 )
=> xC = 0, 6 ; yC = -1
=> -1 = a . 0, 6
=> a = \(\frac{-1}{0,6}=\frac{-1}{\frac{3}{5}}=-\frac{5}{3}\)
=> C( 0, 6 ; -1 ) thuộc đồ thị hàm số \(y=-\frac{5}{3}x\)( 3 )
Từ ( 1 ) , ( 2 ) và ( 3 )
=> Ba điểm A, B, C không thẳng hàng ( vì ba điểm không cùng thuộc một đồ thị hàm số )
a) Tự làm
b) Vt pt dường thẳng đi qua 2 trong 3 điểm trên rùi thay tọa độ của điểm còn lại nếu thỏa mãn thì 3 điểm đó thẳng hàng, ngược lại thì ko
vì 3 điểm đó cùng thuộc 1 đồ thị của hàm số