Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi độ dài quãng đường AB là x(km)(x>0)
độ dài quãng đường khác là x+15(km)
thời gian đi là: \(\frac{x}{30}\left(h\right)\)
thời gian về là:\(\frac{x+15}{40}\left(h\right)\)
theo đề bài: thời gian về ít hơn thời gian đi là 20 phút\(=\frac{1}{3}h\) nên ta có PT
\(\frac{x}{30}-\frac{x+15}{40}=\frac{1}{3}\)
\(\Leftrightarrow\frac{4x}{120}-\frac{3\left(x+15\right)}{120}=\frac{40}{120}\)
\(\Leftrightarrow4x-3x-45=40\)
\(\Leftrightarrow x=95\left(tmđk\right)\)
vậy đọ dài quãng đường AB là 95 km
Đổi: 20 phút = 1/3 h Gọi quãng đường AB là x (km) (x>0) Thời gian lúc đi là: x/30 (h) QĐ lúc về là: x + 15 (km) Thời gian lúc về là: (x + 15)/40 (h) Vì thời gian về ít hơn thời gian đi 20 phút nên ta có PT: x/30 - (x+15)/40 = 1/3 => ( x - 45)/120 = 1/3 => x - 45 = 40 => x = 85 (km) Vậy quãng đường AB dài 85 km
Gọi độ dài AB là x
Thời gian đi là x/30
Thời gian về là \(\dfrac{x+10}{25}\)
Theo đề, ta có: (x+10)/25-x/30=4/5
=>x/25-2/5-x/30=4/5
=>x/150=6/5
=>x=180
`->` gọi quãng đường `AB` là : `x(km;x>0)`
`-` quãng đường của xe máy lúc về là : `x+10(km)`
`-` thời gian của xe máy khi đi từ `A` đến `B` là : `x/30` (giờ)
`-` đổi `48` phút `=4/5` giờ
`=>` theo bài ra ta có được phương trình như sau :
`(x+10)/25-x/30=4/5`
`<=>6x -60+5x=120`
`<=>x=120-60`
`<=>x=60` (nhận)
Vậy quãng đường `AB` là `60km`
Gọi vận tốc dự định của xe máy là x ( x >0) đơn vị km/h
30p = 0,5h
Có quãng đường dài 120km -> Tgian xe máy dư định đi là \(t=\frac{s}{v}=\frac{120}{x}\)( giờ)
Theo đề ta có được :
\(\frac{60}{x}+\frac{60}{x+10}=\frac{120}{x}-0,5\)
\(\Leftrightarrow\frac{60\left(x+10\right)}{x\left(x+10\right)}+\frac{60x}{x\left(x+10\right)}=\frac{120}{x}-\frac{0,5x}{x}\)
\(\Leftrightarrow\frac{60x+600}{x\left(x+10\right)}+\frac{60x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\frac{60x+600+60x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\frac{600+120x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\left(600+120x\right)\cdot x=\left(120-0,5x\right)\cdot x\left(x+10\right)\)
Từ đây tiếp tục làm tiếp :>
Gọi vận tốc ban đầu của người đó là x (km/h; \(x>5\))
Thời gian dự định là \(\dfrac{60}{x}\) (giờ)
Vận tốc lúc sau là x - 5 (km/h)
Thời gian người đó đi trên nửa quãng đường đầu là \(\dfrac{30}{x}\) (giờ)
Thời gian người đó đi trên nửa quãng đường sau là \(\dfrac{30}{x-5}\) (giờ)
Do người đó đến B chậm hơn dự định 1 giờ => ta có phương trình:
\(\dfrac{30}{x}+\dfrac{30}{x-5}=\dfrac{60}{x}+1\)
<=> \(\dfrac{30}{x-5}-\dfrac{30}{x}-1=0\)
<=> \(\dfrac{30x-30\left(x-5\right)-x\left(x-5\right)}{x\left(x-5\right)}=0\)
<=> 30x - 30x + 150 - x2 + 5x = 0
<=> x2 -5x - 150 = 0
<=> (x-15)(x+10) = 0
Mà x > 5
<=> x - 15 = 0
<=> x = 15 (tm)
KL Vận tốc dự định của người đó là 15 km/h