Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì PB=MP nên tam giác BMP cân
Mà \(\widehat{MPB}\)=\(\widehat{MPC}\)(cùng chắn cung AB = cung AC) =60o
=> tam giác BMP đều
Xét tam giác AMB và tam giác CPB, có: AB=BC, AM=BP, góc MAB = PCB ( cùng chắn cung BP)
=> tam giác AMB = tam giác CPB => AM=CP
=> AP= AM+MP=CP+BP
Bạn Trần Phương LInh làm sai ở chỗ xét hai tam giác
Xét tam giác AMB và tam giác CPB có
AB = BC (tam giác ABC đều )
\(\widehat{ABM}=\widehat{CBP}\) ( CÙNG + \(\widehat{MBC}=60^0\))
MB = BP ( tam giác BMP đều )
=) tam giác AMB = tam giác CPB ( c - g - c )
a,Ta có góc ABC =góc BAC=góc BCA=60•(ABC là Δ đều ) =>BPA=60•
Xét ΔBAQ và ΔBAP có
góc A chung
góc ABQ=góc BPA(60•)
=> ΔBAQ~ΔBPA(g.g)
=>BA/PA=AQ/AB
=>BA2=AP.AQ mà AB=BC
=>BC2=AP.AQ(đpcm )
b,trên đoạn PA lây điểm M sao cho PM=PB thì ta có Tam giác PMB là tam giác đều
vì góc ACB=60=PBM=>ABM=PBC
=> tam giác ABM = tam giác CBP(c.g.c)=> AM=PC
=>PB+PC==PM+AM=PA
A B C I I I 1 2 D E F Q R P K M N H
Gọi BC tiếp xúc với (I), (I1), (I2) lần lượt tại D,M,N. AP cắt EF tại H và tiếp xúc với (I1),(I2) lần lượt tại Q,R.
Ta có \(EF=MN;EF=HE+HF=2HQ+QR;MN=PM+PN=2PR+RQ\)
Suy ra \(HE=PN\)
Lại có \(DN=PD+PN=CD-CP+PN=\frac{CA+BC-AB+CP+PA-CA-2CP}{2}\)
\(=\frac{BP+PA-AB}{2}=PM\) hay \(PN=DM\). Suy ra \(HE=DM\)
Mà tứ giác EFNM là hình thang cân nên \(HD||EM||FN\)
Nếu gọi DH cắt lại (I) tại K thì các tam giác cân \(EI_1M,KID,FI_2N\) đồng dạng có các cạnh tương ứng song song đôi một
Do đó \(II_1,DM,KE\) đồng quy tại B, \(II_2,DN,KF\) đồng quy tại C
Nói cách khác, BE và CF cắt nhau tại K. Vậy BE và CF gặp nhau trên (I).
gọi AB giao ( T ) tại K
có AD là tia phân giác của BAC => sđ cung KD = sđ MD
mà PBE = 1/2 ( sđ MD - sđ PD) =1/2 ( sđ KD-sđ PD ) =1/2 sđ KP = BAE
khi CM đc tam giác ABE ~ tam giác BPE ( g - g)
=> BE2 = EP.EA
gọi AB giao (T) tại K
Có AD là tia phân giác của BAC =>sđ cung KD= sđ MD
Mà PBE =1/2(sđMD-sđPD)=1/2(sđKD-sđPD)=1/2sđKP=BA
Ta CM được : tam giác ABE~tam giác BPE(g.g)
=>BE^2=EP.EA
Lời giải:
$\widehat{APB}=\widehat{ACB}=60^0$ (góc nt cùng nhìn cung $AB$)
$\widehat{ABC}=60^0$
$\Rightarrow \widehat{APB}=\widehat{ABC}=\widehat{ABQ}$
Xét tam giác $APB$ và $ABQ$ có:
$\widehat{APB}=\widehat{ABQ}$
$\widehat{A}$ chung
$\Rightarrow \triangle APB\sim \triangle ABQ$ (g.g)
$\Rightarrow \frac{AP}{AB}=\frac{AB}{AQ}\Rightarrow AB^2=AP.AQ$
Mà $AB=BC$ nên $BC^2=AP.AQ$ (đpcm)
Hình vẽ: