K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

Gọi chiều dài của tấm thứ nhất là x,chiều rộng của tấm thứ nhất là y.
Gọi chiều rộng của tấm thứ 2 là z,gọi chiều dài của tấm thứ 3 là t.Ta có:
$2x+t=110$
$2z+y=2,1$
Và có:
$\dfrac{xy}{120000}=\dfrac{xz}{192000}=\dfrac{1440 00}{zt}$
Ta có:
$\dfrac{xy}{120000}=\dfrac{xz}{192000}
ightarrow \dfrac{y}{5}=\dfrac{z}{8}$
Đặt $\dfrac{y}{5}=\dfrac{z}{8}=k 
ightarrow y=5k \ \ z=8k$
$
ightarrow 2.8k+5k=21k=2,1 
ightarrow k=0,1 
ightarrow z=0,8m \ \ y=0,5m$
Lại có:
$\dfrac{xz}{192000}=\dfrac{144000}{zt} 
ightarrow \dfrac{0,8x}{192000}=\dfrac{0,8t}{144000} 
ightarrow \dfrac{x}{4}=\dfrac{t}{3}$
Đặt $\dfrac{x}{4}=\dfrac{t}{3}=m 
ightarrow x=4n \ \ t=3n$
$
ightarrow 2x+t=11n=110 
ightarrow n=10 
ightarrow x=40 \ \ t=30$
$
ightarrow $ $xy=40.0,5=20 m^2 \\ xz=40.0,8=32m^2 \\ zt=30.0,8=24$

1: Xet ΔMDB vuông tại D và ΔNEC vuông tại E có

BD=CE
góc MBD=góc NCE

=.ΔMDB=ΔNEC

=>DM=EN

2: Xét tứ giác MDNE có

MD//NE

MD=NE

=>MDNE là hình bình hành

=>MN cắt DE tại trung điểm của mỗi đường và ME//ND

 

12 tháng 8 2016

bạn tự vẽ hình nha

a) xét 2 tam giác BKA và CKD có:

BK=CK (K là TĐ của BC)

2 góc BKA=CKD (đối đỉnh)

KA=KD(gt)

=> 2 tam giác BKA=CKD(c.g.c)

=> góc ABK=góc DCK(2 góc tương ứng)

mà 2 góc này ở vị trí so le trong 

=> AB//CD

b) 2 tam giác ABK=DCK(theo a)

=> BA=CD(2 cạnh tương ứng)

ta có AB//CD

mà BA vuông góc với AC 

=> DC vuông góc với AC

xét 2 tam giác ABH và CDH có:

góc BAH=góc DCH(=90độ)

BA=CD(chứng minh trên)

AH=CH(H là TĐ của AC)

=> 2 tam giác ABH=CDH(c.g.c)

c) 2 tam giác ABH=CDH(theo b)

=> 2 góc AHB=CHD(2 góc tương ứng)

xét 2 tam giác BAC và DCA có:

góc BAC=góc DCA(=90độ)

BA=DC(2 tam giác BKA=CKD)

cạnh AC chung

=> 2 tam giác BAC=DCA(c.g.c)

=> 2 góc BCA=DAC(2 góc tương ứng)

xét 2 tam giác AMH và CNH có:

góc MAH =góc NCH (chứng minh trên )

HA=HC (H là TĐ của AC)

góc AHB = góc CHD( chứng minh trên)

=> 2 tam giác AMH =CNH(g.c.g)

=> MH=NH(2 cạnh tương ứng)

=> tam giác MHN cân ở H

 

 

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn