Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , tổng các phân số đã cho là : 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = 79/64
b, \(\frac{79}{64}\)và \(\frac{2017}{2018}\)= \(\frac{159422}{129152}\)và \(\frac{129088}{129152}\)= \(\frac{159422}{129152}\)> \(\frac{129088}{129152}\)
=> \(\frac{79}{64}\)> \(\frac{2017}{2018}\)
a) 1/2 + 1/4 + 1/8 + 1/ 16 + 1/32 + 1/64
=32/64 + 16/64 + 8/64 + 4/64 + 2/64
=32+16+8+4+2/64 = 66/64= 33/32
b) ta có 33/32 > 1 và 2017/2018<1
nên 33/32 > 2017/2018
buồn quá . 8 giờ 15 vô học rồi mà ko có ai giải cho mình hết
? x ? = ?
=?
= ? : ?
=...................
hok tốt :)))
(LAUGH) :)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
1) a) \(\frac{5454}{5757}-\frac{171717}{191919}=\frac{18\times3\times101}{19\times3\times101}-\frac{17\times10101}{19\times10101}=\frac{18}{19}-\frac{17}{19}=\frac{1}{19}\)
b) \(\frac{6}{5}\times\frac{7}{6}\times\frac{8}{7}\times....\times\frac{2021}{2020}=\frac{6\times7\times8\times...\times2021}{5\times6\times7\times...\times2020}=\frac{2021}{5}\)
2) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}=2\times\frac{1}{6}+2\times\frac{1}{12}+2\times\frac{1}{20}+...+2\times\frac{1}{90}\)
\(=2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=2\times\left(\frac{1}{2}-\frac{1}{10}\right)=2\times\frac{2}{5}=\frac{4}{5}\)
b)Vì \(a-1< a+1\)
=> \(\frac{1}{a-1}>\frac{1}{a+1}\)
Vì \(\frac{1}{33}>\frac{1}{34}>\frac{1}{35}>\frac{1}{36}\)
\(\Rightarrow M>\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}\)\(\)
\(\Rightarrow M>\frac{4}{36}=\frac{1}{9}\)
Mà \(\frac{1}{9}>\frac{1}{10}\)
\(\Rightarrow\)\(M>\frac{1}{9}>\frac{1}{10}\)
Vậy : M > N
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}>1\)
Thank you bạn dcv new ^ ^