Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 202x có tận cùng là 0
122x = 144x ; 20122x = 4048144x
xét x = ak + 1 thì ta có: 1442k+1= 1442k * 144 = 20726k * 144 có tận cùng là 4
40481442k+1 = (...6)2 * 4048144 có tận cùng là 4
=> số đã cho tận cùng là 8 ko phải là số chính phương (1)
xét x = 2k thì ta có: 1442k = 20736k có tận cùng là 6
40481442k = (...6)k có tận cùng là 6
=> số đã cho có tận cùng là 2 ko phải số chính phương (2)
từ (1) và (2) => ko có số x
Phương Anh à tớ linh trên lớp cậu nè
tớ trợ giúp câu b
nhóm 4 số vào sau đó lấy ssh chia 4 tìm ra số nhóm sau ddoss tính từng nhóm ra là -4 rồi nhân vói số nhóm là ra kết quả
3xy + 2x + 2y = 0
=> x.(3y + 2) = -2y
=> \(x=\frac{-2y}{3y+2}\)
Do \(x\in N\Rightarrow3y+2\inƯ\left(-2y\right)\)
Mà 3y + 2 > -2y do y ϵ N => -2y = 0
=> y = 0; x = 0
Vậy x = y = 0
20^2x có tận cùng là 0
12^2x=144^x;2012^2x=4048144^x
xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4
4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4
suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)
xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6
4948144^2k=(...6)^k có tận cùng là 6
suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)
từ(1) và (2) suy ra không có số x
có tồn tại hoặc ko