K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

Ta có:

\(x^2+4y^2+z^2-4x+4y-8z+24=0\)

\(\Leftrightarrow x^2-4x+4+4y^2+4y+1+z^2-8z+16+3=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+\left(z^2-8z+16\right)+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3=0\)

Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(2y+1\right)^2\ge0\\\left(z-4\right)^2\ge0\end{matrix}\right.\)

 \(\Rightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3\ge3\ne0\)

Vậy không có số thực x, y, z nào thỏa mãn đẳng thức.

29 tháng 8 2016

VT= x2+4y2+z2-4x+4y-8z+32

= (x2-4x+4)+(4y2+4y+1)+(z2-8z+16)+11

= (x-2)2+(2y+1)2+(z-4)2+11>0

Vậy không có x,y,x thoã mã đẳng thức

3 tháng 10 2020

a) 5x2 + 10y2 - 6xy - 4x - 2y + 3 

= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1

= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1

Ta có : \(\hept{\begin{cases}\left(x-3y\right)^2\\\left(2x-1\right)^2\\\left(y-1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1>0\forall x,y\)

=> đpcm

b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 = 0 < Sửa -z2 -> +z2 )

= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1

= ( x - 1 )2 + 4( y2 + 2y + 1 ) + ( z - 3 )2 + 1

= ( x - 1 )2 + 4( y + 1 )2 + ( z - 3 )2 + 1

Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\4\left(y+1\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\forall x,y,z\)

=> đpcm

2 tháng 4 2024

VT= x2+4y2+z2-4x+4y-8z+23

= (x2-4x+4)+(4y2+4y+1)+(z2-8z+16)+2

= (x-2)2+(2y+1)2+(z-4)2+2>0

vây không tồn tại x,y,z để phương trình trên có nghiệm

15 tháng 9 2020

a) 5x2 + 10y2 - 6xy - 4x - 2y + 3 

= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1

= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y, z

=> đpcm 

b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 

= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1

= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x, y, z

=> đpcm