Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
72015 = 72012 . 73 = 74 . 503 . ...3 = ...1 . ...3 = ...3
Suy ra 72015 có chữ số tận cùng là 3
cái này minh chỉ giải dc câu 1 thôi nhé.
bấm máy tính CASIO FX-570 ES/VN PLUS.
quy trình ấn phím:
SHIFT -> LOG(dưới nút ON) -> 2 -> X^*(bên cạnh dấu căn) -> ALPHA -> X -> bấm phím xuống -> 1 -> bấm phím lên -> 20.
bấm dấu bằng.
ta có kết quả là 2097150.
vậy số tận cùng là 0.
Bài toán 1 : Tìm chữ số tận cùng của các số :
a) 799 b) 141414 c) 4567
Lời giải :
a) Trước hết, ta tìm số dư của phép chia 99 cho 4 :
99 - 1 = (9 - 1)(98 + 97 + … + 9 + 1) chia hết cho 4
=> 99 = 4k + 1 (k thuộc N) => 799 = 74k + 1 = 74k.7
Do 74k có chữ số tận cùng là 1 (theo tính chất 1c) => 799 có chữ số tận cùng là 7.
b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d thì 141414 = 144k có chữ số tận cùng là 6.
c) Ta có 567 - 1 chia hết cho 4 => 567 = 4k + 1 (k thuộc N)
=> 4567 = 44k + 1 = 44k.4, theo tính chất 1d, 44k có chữ số tận cùng là 6 nên 4567 có chữ số tận cùng là 4.
Bài toán 2 : Tìm chữ số tận cùng của tổng S = 21 + 35 + 49 + … + 20048009.
Lời giải :
Nhận xét : Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, …, 2004}).
Theo tính chất 2, mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng :
(2 + 3 + … + 9) + 199.(1 + 2 + … + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + … + 9) + 9 = 9009.
Vậy chữ số tận cùng của tổng S là 9.
Từ tính chất 1 tiếp tục => tính chất 3.
Bài toán 3 : Tìm chữ số tận cùng của tổng T = 23 + 37 + 411 + … + 20048011.
Lời giải :
Nhận xét : Mọi lũy thừa trong T đều có số mũ khi chia cho 4 thì dư 3 (các lũy thừa đều có dạng n4(n - 2) + 3, n thuộc {2, 3, …, 2004}).
Theo tính chất 3 thì 23 có chữ số tận cùng là 8 ; 37 có chữ số tận cùng là 7 ; 411 có chữ số tận cùng là 4 ; …
Như vậy, tổng T có chữ số tận cùng bằng chữ số tận cùng của tổng : (8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 199.(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 1 + 8 + 7 + 4 = 200(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 8 + 7 + 4 = 9019.
Vậy chữ số tận cùng của tổng T là 9.
* Trong một số bài toán khác, việc tìm chữ số tận cùng dẫn đến lời giải khá độc đáo.
Bài toán 4 : Tồn tại hay không số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Lời giải : 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?
Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.
Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Sử dụng tính chất “một số chính phương chỉ có thể tận cùng bởi các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9”, ta có thể giải được bài toán sau :
Bài toán 5 : Chứng minh rằng các tổng sau không thể là số chính phương :
a) M = 19k + 5k + 1995k + 1996k (với k chẵn)
b) N = 20042004k + 2003
Bài toán 6 : Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng : p8n +3.p4n - 4 chia hết cho 5.
* Các bạn hãy giải các bài tập sau :
Bài 1 : Tìm số dư của các phép chia :
a) 21 + 35 + 49 + … + 20038005 cho 5
b) 23 + 37 + 411 + … + 20038007 cho 5
Bài 2 : Tìm chữ số tận cùng của X, Y :
X = 22 + 36 + 410 + … + 20048010
Y = 28 + 312 + 416 + … + 20048016
Bài 3 : Chứng minh rằng chữ số tận cùng của hai tổng sau giống nhau :
U = 21 + 35 + 49 + … + 20058013
V = 23 + 37 + 411 + … + 20058015
Bài 4 : Chứng minh rằng không tồn tại các số tự nhiên x, y, z thỏa mãn :
19x + 5y + 1980z = 1975430 + 200
Tim so tu nhien n thoa man bieu thuc :n^2+n+1 chia het cho 1995^1996
Giup minh voi minh dang can gap
-
Lũy thừa của 0 và 1[sửa | sửa mã nguồn]
- {\displaystyle 0^{n}=0\,}.(n > 0)
- {\displaystyle 1^{n}=1\,}.
Lũy thừa với số mũ nguyên dương[sửa | sửa mã nguồn]
Trong trường hợp b = n là số nguyên dương, lũy thừa bậc n của a là tích của n thừa số bằng nhau, mỗi thừa số bằng a:
- {\displaystyle a^{n}=\underbrace {a\times a\cdots \times a} _{n}}
Các tính chất quan trong nhất của lũy thừa với số mũ nguyên dương m, n là
- {\displaystyle a^{m+n}=a^{m}\times a^{n}}
- {\displaystyle a^{m-n}={\frac {a^{m}}{a^{n}}}} với mọi a ≠ 0
- {\displaystyle (a^{m})^{n}=a^{mn}}
- {\displaystyle a^{m^{n}}=a^{(m^{n})}}
- {\displaystyle (a\times b)^{n}=a^{n}\times b^{n}}
- {\displaystyle ({\frac {a}{b}})^{n}={\frac {a^{n}}{b^{n}}}}
Đặc biệt, ta có:
- {\displaystyle a^{1}=a}
lũy thừa bậc n của a là tích của n thừa số a
các chữ số có tận cùng bằng 5 dều có chũ số tận cùng là 5 nhé
chúc bn hk tốt
2^1=2 (du1) 2^2=4 (du2) 2^3 =..8 (du 3) 2^4=...6 (du4) ta có 203:4=50(du30) vay so tan cung la ...8 (^ la mũ, so du tuog ung voi cac so tan cung do)
Gọi số cần tìm là ab (a khác 0; a,b là các chữ số)
Số mới là 1ab1
Ta có:
ab x 23 = 1ab1
=> ab x 23 = 1001 + ab x 10
=> ab x 23 - ab x 10 = 1001
=> ab x 13 = 1001
=> ab = 1001 : 13 = 77
Vậy số cần tìm là 77
gọi số cần tìm là ab ( ab có gạch ngang trên đầu )
viết thêm số 1 bên phải và tận cùng số đó được 1ab1
ta có : ab x 23 = 1ab1
ab x 23 = 1001 + ab.10
ab x 13 = 1001
ab = 77
vậy \(ab=77\)
cách 1 : tìm 2 chữ số bất biến . VD : 01 ;25 ; 76
cách 2 : giải bằng đồng hồ dư thức
tick cho mk nha
Bạn có thể dùng đồng dư thức