K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

\(y=\sqrt{x^2+2x+3}+\sqrt{2x^2+4x+3}\)

\(y=\sqrt{x^2+2x+3}+\sqrt{2\left(x^2+2x+\dfrac{3}{2}\right)}\)

\(y=\sqrt{x^2+2x+1+2}+\sqrt{2\left(x^2+2x+1+\dfrac{1}{2}\right)}\)

\(y=\sqrt{\left(x+1\right)^2+2}+2\sqrt{\left(x+1\right)^2+1}\ge\sqrt{2}+1\)

Dấu "=" xảy ra khi: \(x=-1\)

19 tháng 12 2017

cai tren so 2 o ngoai can nha

4 tháng 9 2019

1.

\(A=\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{4+\sqrt{12}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

2.

\(y=\sqrt{16-x^2}\le4\)

Dau '=' xay ra khi \(x=\sqrt{12}\)

3.

\(y=2+\sqrt{2\left(x-1\right)^2+3}\ge2+\sqrt{3}\)

Dau '=' xay ra khi \(x=1\)

15 tháng 8 2019

Trong căn thứ nhất là 4x ms đúng chứ nhỉ

15 tháng 8 2019

Nếu đề bài là 4x thì cách giải nè :

2x2 + 4x + 3 = 2.(x2 + 2x +1) + 1 = 2.(x+1)2 + 1 >= 1 ( >= là dấu lớn hơn hoặc bằng )  khi đó căn thứ nhất >= căn 1 =1

x2 + 2x + 3 = (x+1)2 + 2 >=2  khi đó căn thứ 2 >= căn 2

Suy ra y>= 1 + căn 2

Dấu = xảy ra khi x+1=0 khi x=-1

NM
1 tháng 9 2021

ta có :

\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=\left|x+1\right|+\left|x+2\right|\ge\left|x+1-x-2\right|=1\)

Dấu bằng xảy ra khi : \(\left(x+1\right)\left(x+2\right)\le0\Leftrightarrow-2\le x\le-1\)

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

12 tháng 12 2021

\(D=\sqrt{\left(x+\sqrt{3}\right)^2}+\sqrt{\left(x-\frac{1}{2}\right)^2}\)

\(D=|x+\sqrt{3}|+|x-\frac{1}{2}|=|x+\sqrt{3}|+|\frac{1}{2}-x|\ge|x+\sqrt{3}+\frac{1}{2}-x|\)

=sqrt(3)+1/2.

Vậy giá trị nhỏ nhất cần tìm là: sqrt(3)+1/2. Dấu bằng thì bạn tham khảo bất đẳng thức:

lal+lbl geq la+bl

25 tháng 8 2020

a) Ta có: \(F=\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy Min(F) = 1 khi x=2

b) \(D=\sqrt{2x^2-4x+10}=\sqrt{2\left(x-1\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Min\left(D\right)=2\sqrt{2}\Leftrightarrow x=1\)

c) \(G=\sqrt{2x^2-6x+5}=\sqrt{2\left(x-\frac{3}{2}\right)^2+\frac{1}{2}}\ge\sqrt{\frac{1}{2}}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)

Vậy \(Min\left(G\right)=\frac{\sqrt{2}}{2}\Leftrightarrow x=\frac{3}{2}\)

3 tháng 10 2016

Hai câu còn lại bạn tự làm nhé :)

3 tháng 10 2016

1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Suy ra MIN A = \(-\sqrt{2}\)khi  \(x=y=z=-\frac{\sqrt{2}}{3}\)