Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c )
\(1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}=1+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{3}{2}}}}=1+\frac{1}{1+\frac{1}{1+\frac{5}{3}}}=1+\frac{1}{1+\frac{1}{\frac{8}{3}}}=1+\frac{1}{\frac{11}{8}}=\frac{19}{11}\)
\(\frac{5}{17}-\frac{11}{13}+\frac{12}{17}+\frac{27}{13}+\left(-2020\right)^2\)
\(=\left(\frac{5}{17}+\frac{12}{17}\right)+\left(\frac{-11}{13}+\frac{27}{13}\right)+\left(-2020\right)^2\)
\(=1+\frac{16}{13}+\left(-2020\right)^2\)\(=1+\frac{16}{13}+4080400\)
\(=4080402\frac{3}{13}\)
1.
Theo bài ra ta có:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
Ta có:
\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra:
x = 2 . 8 = 16
y = 2 . 12 = 24
z = 2 . 15 = 30
2/
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
Ta có :x = 2k ; y = 5k
=>x . y = 2k . 5k = 10k2 = 10 => k2 = 1 => k = ±1
Thay k = 1 ta có : x = 2 . 1 = 2 ; y = 5 . 1 = 5
Thay k = -1 ta có : x = 2 . (-1) = -2 ; y = 5 . (-1) = -5
Vậy x = ±2 ; y = ±5
3/
Giải:
Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .
Theo bài ra ta có:
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)
Suy ra :
a = 35 . 9 = 315
b = 35 . 8 = 280
c = 35 . 7 = 245
d = 35 . 6 = 210
Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .
\(\frac{\left(1+17\right).\left(1+\frac{17}{2}\right).\left(1+\frac{17}{3}\right)...\left(1+\frac{17}{19}\right)}{\left(1+19\right).\left(1+\frac{19}{2}\right).\left(1+\frac{19}{3}\right)...\left(1+\frac{19}{17}\right)}\)
\(=\frac{18.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{20.\frac{21}{2}.\frac{22}{3}...\frac{36}{17}}=\frac{18.19.20...36}{1.2.3...19}:\frac{20.21.22...36}{1.2.3...17}\)
\(=\frac{18.19.20...36}{1.2.3...19}.\frac{1.2.3...17}{20.21.22....36}=\frac{1.2.3...17.18...36}{1.2.3...19.20...36}=1\)
a) \(\frac{-77}{143}+\frac{65}{143}-\frac{66}{143}+\frac{7}{22}\)
= \(\frac{-78}{143}+\frac{7}{22}\)= \(\frac{-6}{11}+\frac{7}{22}\)= \(\frac{-12}{22}+\frac{7}{22}\)
= \(\frac{-5}{22}\)
b) \(\frac{-4}{5}-\frac{20}{170}+\frac{51}{170}+\frac{150}{170}\)= \(\frac{-4}{5}-\frac{221}{170}\)
\(\frac{-4}{5}-\frac{13}{10}\)= \(\frac{-8}{10}-\frac{13}{10}\)=\(\frac{-21}{10}\)