Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{2}\)\(-\)\(\frac{1}{2^2}\)\(+\)\(\frac{1}{2^3}\)\(-\)\(\frac{1}{2^4}\)\(+\)........... \(+\)\(\frac{1}{2^{99}}\)\(-\)\(\frac{1}{2^{100}}\)
2A = 1 - \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)- \(\frac{1}{2^3}\)+.........+ \(\frac{1}{2^{98}}\)- \(\frac{1}{2^{99}}\)
2A + A =( 1 - \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)- \(\frac{1}{2^3}\)+.........+ \(\frac{1}{2^{98}}\)- \(\frac{1}{2^{99}}\)) \(+\)( \(\frac{1}{2}\)\(-\)\(\frac{1}{2^2}\)\(+\)\(\frac{1}{2^3}\)\(-\)\(\frac{1}{2^4}\)\(+\)........... \(+\)\(\frac{1}{2^{99}}\)\(-\)\(\frac{1}{2^{100}}\))
3A = 1 \(-\) \(\frac{1}{2^{100}}\)
\(\Rightarrow\)A = \(\frac{1-\frac{1}{2^{100}}}{3}\)= \(\frac{1}{3}\)
\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+.....-\frac{1}{2^{99}}\Rightarrow2A+A=3A=\left(1-\frac{1}{2}+\frac{1}{2^2}-....-\frac{1}{2^{99}}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+......-\frac{1}{2^{100}}\right)=1-\frac{1}{2^{100}}=\frac{2^{100}-1}{2^{100}}\Rightarrow A=\frac{2^{100}-1}{3.2^{100}}\)
\(2,4B=2+\frac{1}{2}+\frac{1}{2^3}+.....+\frac{1}{2^{97}}\Rightarrow4B-B=3B=\left(2+\frac{1}{2}+....+\frac{1}{2^{97}}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)=2-\frac{1}{2^{99}}=\frac{2^{100}-1}{2^{99}}\Rightarrow B=\frac{2^{100}-1}{3.2^{99}}\)
\(3,C=\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-....-\frac{1}{2^{58}}\Rightarrow8C=4-\frac{1}{2}+\frac{1}{2^4}-.....-\frac{1}{2^{55}}\Rightarrow8C+C=9C=\left(4-\frac{1}{2}+\frac{1}{2^4}-....-\frac{1}{2^{55}}\right)+\left(\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-....-\frac{1}{2^{58}}\right)=4-\frac{1}{2^{58}}=\frac{2^{60}-1}{2^{58}}\Rightarrow C=\frac{2^{60}-1}{9.2^{58}}\)
\(M=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
\(2M=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)
\(2M+M=\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\right)\)
\(3M=1-\frac{1}{2^{100}}\)
\(M=\frac{1-\frac{1}{2^{100}}}{3}\)
Ta có : \(B=\frac{1}{2}-\frac{1}{2^2}+...-\frac{1}{2^{100}}\)
\(\Rightarrow2B=1-\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^{99}}\)
\(\Rightarrow2B+B=\left(1-\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^{99}}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+...-\frac{1}{2^{100}}\right)\)
\(\Rightarrow3B=1-\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^{99}}+\frac{1}{2}-\frac{1}{2^2}+...-\frac{1}{2^{100}}\)
\(\Rightarrow3B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow3B=1-\frac{1}{2^{100}}\)
\(\Rightarrow B=\frac{1-\frac{1}{2^{100}}}{3}\)