K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2021

a)\(\sqrt{\dfrac{2}{2-\sqrt{3}}}=\sqrt{\dfrac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)\(=\sqrt{2\left(2+\sqrt{3}\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

b)\(\sqrt{\dfrac{2}{3}}-\sqrt{24}+2\sqrt{\dfrac{3}{8}}+\dfrac{1}{6}=\dfrac{\sqrt{6}}{3}-\sqrt{2^2.6}+\dfrac{2\sqrt{24}}{8}+\dfrac{1}{6}\)

\(=\dfrac{\sqrt{6}}{3}-2\sqrt{6}+\dfrac{\sqrt{2^2.6}}{4}+\dfrac{1}{6}=\dfrac{-5\sqrt{6}}{3}+\dfrac{2\sqrt{6}}{4}+\dfrac{1}{6}\)

\(=\dfrac{-7\sqrt{6}}{6}+\dfrac{1}{6}\)

26 tháng 9 2021

Nhầm xíu

\(\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}=\sqrt{\dfrac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}-\sqrt{\dfrac{2\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{2\left(2+\sqrt{3}\right)}-\sqrt{2\left(2-\sqrt{3}\right)}=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+1-\left|\sqrt{3}-1\right|=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

a: \(=2\cdot\dfrac{4}{3}\sqrt{3}-3\cdot\dfrac{1}{9}\sqrt{3}-6\cdot\dfrac{2}{15}\sqrt{3}\)

\(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)

b: \(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+2+\sqrt{3}=4\)

c: \(=6\sqrt{3}-4\sqrt{3}+\dfrac{3}{5}\cdot5\sqrt{3}=2\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)

23 tháng 6 2017

(bài 1) a) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\) = \(\dfrac{5-2\sqrt{6}-5-2\sqrt{6}}{25-24}\)

= \(\dfrac{-4\sqrt{6}}{1}\) = \(-4\sqrt{6}\)

b) \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\) = \(\sqrt{\left(\sqrt{5}+1\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{3}}\)

= \(\left(\sqrt{5}+1\right)-\left(\sqrt{5}-1\right)\) = \(\sqrt{5}+1-\sqrt{5}+1\) = \(2\)

c) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\) = \(\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\)

= \(\sqrt{6}.\sqrt{16}\) = \(4\sqrt{6}\)

d) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)

= \(\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)

= \(\sqrt{3}+2+\sqrt{2}-\dfrac{1}{2-\sqrt{3}}\) = \(\dfrac{\left(\sqrt{3}+2+\sqrt{2}\right)\left(2-\sqrt{3}\right)-1}{2-\sqrt{3}}\)

= \(\dfrac{2\sqrt{3}-3+4-2\sqrt{3}+2\sqrt{2}-\sqrt{6}-1}{2-\sqrt{3}}\)

= \(\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3}}\) = \(\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{2}}\) = \(\sqrt{2}\)

e) \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\) = \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{1+\sqrt{5}}\)

= \(\dfrac{4}{1+\sqrt{3}}-\sqrt{3}\) = \(\dfrac{4-\sqrt{3}-3}{1+\sqrt{3}}\) = \(\dfrac{1-\sqrt{3}}{1+\sqrt{3}}\)

= \(\dfrac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}\) = \(\dfrac{1-2\sqrt{3}+3}{-2}\) = \(\dfrac{4-2\sqrt{3}}{-2}\)

= \(\dfrac{-2\left(-2+\sqrt{3}\right)}{-2}\) = \(\sqrt{3}-2\)

23 tháng 6 2017

bài 2)

a)\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(a+b-2\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)

= \(\dfrac{a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}-2a\sqrt{b}-2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\)

= \(\dfrac{a\sqrt{a}+-a\sqrt{b}+b\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\) = \(\dfrac{a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)

= \(\dfrac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\) = \(a-b\)

b) \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

= \(\dfrac{2\left(a-1\right)}{4\sqrt{a}}.\dfrac{-4a}{a-1}\) = \(-2\)

5 tháng 7 2017

\(A=\dfrac{1}{\sqrt{7-\sqrt{24}}+1}-\dfrac{1}{\sqrt{7+\sqrt{24}}+1}\)

\(=\dfrac{\sqrt{7-2\sqrt{6}}-1}{7-2\sqrt{6}-1}-\dfrac{\sqrt{7+2\sqrt{6}}-1}{7+2\sqrt{6}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{6}-1\right)^2}-1}{6-2\sqrt{6}}-\dfrac{\sqrt{\left(\sqrt{6}+1\right)^2}-1}{6+2\sqrt{6}}\)

\(=\dfrac{\sqrt{6}-2}{\sqrt{6}\left(\sqrt{6}-2\right)}-\dfrac{\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)

\(=\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{6}+2}=\dfrac{\sqrt{6}+2-\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)

\(=\dfrac{2}{\sqrt{12}\left(\sqrt{3}+\sqrt{2}\right)}=\dfrac{2\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{3}\left(3-2\right)}=\dfrac{3-\sqrt{6}}{3}\)

5 tháng 7 2017

\(5-2\sqrt{6}=\left(\sqrt{2}\right)^2-2\times\sqrt{2}\times\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{3}-\sqrt{2}\right)^2\)

\(7+2\sqrt{10}=\left(\sqrt{2}\right)^2+2\times\sqrt{2}\times\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{2}+\sqrt{5}\right)^2\)

\(8-2\sqrt{15}=\left(\sqrt{5}\right)^3-2\times\sqrt{5}\times\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(B=\dfrac{2}{\sqrt{8-2\sqrt{15}}}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}-\dfrac{3}{\sqrt{7+2\sqrt{10}}}\)

\(=\dfrac{2}{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}-\dfrac{1}{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}-\dfrac{3}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)

\(=\dfrac{2\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\dfrac{1\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\dfrac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}\)

\(=\sqrt{5}+\sqrt{3}-\sqrt{3}-\sqrt{2}-\sqrt{5}+\sqrt{2}=0\)

29 tháng 7 2018

Câu a, b, bạn có thể làm được suy nghĩ đi nha

c)

Ta có pt tổng quát :

\(\dfrac{1}{a\sqrt{a+1}+\left(a+1\right)\sqrt{a}}=\dfrac{1}{\sqrt{a\left(a+1\right)}\left(\sqrt{a}+\sqrt{\left(a+1\right)}\right)}=\dfrac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a}\sqrt{a+1}}=\dfrac{1}{\sqrt{a}}-\dfrac{1}{\sqrt{a+1}}\)\(\Rightarrow C=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+.....+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}=1-\dfrac{1}{5}=\dfrac{4}{5}\)..........Kaito Kid.......

29 tháng 7 2018

a)=-14

a: \(=\dfrac{2\sqrt{7}-10-6+2\sqrt{7}}{4}+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)

\(=\sqrt{7}-4+\dfrac{23}{9}\sqrt{7}+\dfrac{16}{9}\)

\(=\dfrac{32}{9}\sqrt{7}-\dfrac{20}{9}\)

b:\(=\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{2}+\dfrac{5}{6}\sqrt{6}\)

\(=2\sqrt{6}+\dfrac{5}{6}\sqrt{6}=\dfrac{17}{6}\sqrt{6}\)

c: \(=\dfrac{1}{3}\sqrt{3}+\dfrac{1}{6}\sqrt{2}+\dfrac{1}{\sqrt{3}}\cdot\sqrt{\dfrac{5-2\sqrt{6}}{12}}\)

\(=\dfrac{1}{3}\sqrt{3}+\dfrac{1}{6}\sqrt{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

\(=\dfrac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\dfrac{3\sqrt{3}}{6}=\dfrac{\sqrt{3}}{2}\)

 

16 tháng 10 2022

b: \(=\left(\sqrt{ab}+\dfrac{2\sqrt{ab}}{a}-\sqrt{\dfrac{a^2+1}{ab}}\right)\cdot\sqrt{ab}\)

\(=ab+\dfrac{2ab}{a}-\sqrt{a^2+1}=ab+2b-\sqrt{a^2+1}\)

c: \(=2\sqrt{6b}-6\sqrt{18}+10\sqrt{12}-\sqrt{48}\)

\(=2\sqrt{6b}-18\sqrt{2}+20\sqrt{3}-4\sqrt{3}\)

\(=2\sqrt{6n}-18\sqrt{2}+16\sqrt{3}\)

d: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)

a: \(=\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)^2\cdot\left(\sqrt{3}-\sqrt{2}\right)\)

\(=\left(5-2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)\)

\(=5\sqrt{3}-5\sqrt{2}-6\sqrt{2}+4\sqrt{3}=9\sqrt{3}-11\sqrt{2}\)

b: \(=\dfrac{\sqrt{2}}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}}{2-\sqrt{3}+1}\)

\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}\)

\(=\dfrac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{9-3}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)

d: \(=2\sqrt{2}-\sqrt{6}-3\sqrt{2}+\sqrt{6}=-\sqrt{2}\)

a: \(A=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}-\sqrt{2}=0\)

b: \(B=\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)=1-2=-1\)

c: \(B=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{-\left(\sqrt{3}-1\right)}\right)\cdot\left(\sqrt{3}-\sqrt{2}\right)\)

\(=-\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)\)

\(=-\sqrt{6}+2\)

6 tháng 8 2018

\(1.\dfrac{6}{1-\sqrt{3}}-\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}=\dfrac{6}{1-\sqrt{3}}-\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=\dfrac{6}{1-\sqrt{3}}-3=\dfrac{3+3\sqrt{3}}{1-\sqrt{3}}\) \(2.\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}=\dfrac{2\sqrt{3}-6}{2\sqrt{2}-2\sqrt{6}}-\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}=\dfrac{2\sqrt{3}\left(1-\sqrt{3}\right)}{2\sqrt{2}\left(1-\sqrt{3}\right)}-\sqrt{3}-1=\dfrac{\sqrt{3}}{\sqrt{2}}-\sqrt{3}-1=\dfrac{\sqrt{3}-\sqrt{6}-\sqrt{2}}{\sqrt{2}}\) \(3.\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}=\left[\dfrac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\dfrac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right].\left(\sqrt{7}-\sqrt{5}\right)=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=-2\) \(4.\dfrac{\left(\sqrt{2}+1\right)^2-4\sqrt{2}}{\sqrt{2}-1}.\left(\sqrt{2}+1\right)=\dfrac{\left(2-2\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\sqrt{2}-1}=\dfrac{\left(\sqrt{2}-1\right)^2\left(\sqrt{2}+1\right)}{\sqrt{2}-1}=1\)

7 tháng 8 2018

Thank kiu yeu