K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

a) \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{27.28.29}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{27.28}-\frac{1}{28.29}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{28.29}\right)\)

\(=\frac{1}{2}.\frac{405}{812}=\frac{405}{1624}\)

Vậy giá trị của biểu thức \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{27.28.29}=\frac{405}{1624}\)

b) \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}-\frac{1}{4.5.6}+....+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)

\(=\frac{1}{3}\cdot\frac{1353}{8120}=\frac{451}{8120}\)

Vậy giá trị của biểu thức \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}=\frac{451}{8120}\)

25 tháng 2 2018

a)    \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{100-98}{98.99.100}\right)\)

\(=\frac{1}{2}\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{100}{98.99.100}-\frac{98}{98.99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{4}-\frac{1}{19800}=\frac{4949}{19800}\)

25 tháng 2 2018

b) \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)

\(=\frac{1}{3}\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{27.28.29.30}\right)\)

\(=\frac{1}{3}(\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+...+\frac{30-27}{27.28.29.30})\)

\(=\frac{1}{3}(\frac{4}{1.2.3.4}-\frac{1}{1.2.3.4}+\frac{5}{2.3.4.5}-\frac{2}{2.3.4.5}+...+\frac{30}{27.28.29.30}-\frac{27}{27.28.29.30})\)

\(=\frac{1}{3}(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30})\)

\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)

\(=\frac{1}{3}\left(\frac{1}{6}-\frac{1}{24360}\right)\)

\(=\frac{1}{3}.\frac{1353}{8120}\)

\(=\frac{451}{8120}\)

10 tháng 7 2016

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)

\(\frac{2-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{51-49}{49.50.51}\)

\(\frac{1}{1.3}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{49.50}-\frac{1}{50.51}\)

\(\frac{1}{3}-\frac{1}{50.51}\)

\(\frac{1}{3}-\frac{1}{2550}\)

\(\frac{283}{850}\)

9 tháng 5 2018

bạn ơi hình như đề bài là: 

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\)thì phải ha.

8 tháng 5 2018

A=49/51

8 tháng 5 2018

Mình nhầm 49/1234